Learn more about Search Results 7 - Page 6

「GPT-4 対 ゼファー-7b-beta:どちらを使うべきか?」

「ゼファー7Bベータ」は、Hugging Face H4チームによって開発されたモード「ミストラル」の調整版であり、複数のベンチマークテストで以前のChat Llama 70Bモデルと同様のパフォーマンスを発揮し、「MT Bench」ではさらに優れた結果を示しており、MetaのLLama 2よりも正確です

「GPTからMistral-7Bへ:AI会話のエキサイティングな進化」

紹介 人工知能の分野では、特に大規模な言語モデルの領域で驚くべき進展が見られています。大規模言語モデルは、人間のようなテキストを生成したり、文書を要約したり、ソフトウェアコードを書いたりすることができます。Mistral-7Bは、英語のテキストとコード生成の能力をサポートする最近の大規模な言語モデルの一つであり、テキスト要約、分類、テキストの補完、コードの補完など、さまざまなタスクに使用することができます。 Mistral-7B-Instructの特徴は、パラメータが少ないにもかかわらず、優れたパフォーマンスを発揮する能力です。ベンチマークの結果によると、このモデルはすべての7Bモデルを凌駕し、さらに13Bチャットモデルとも競争力を持っています。本ブログでは、Mistral 7Bの機能や能力、使用事例、パフォーマンス、モデルの微調整に関する実践的なガイドなどについて探っていきます。 学習目標 大規模言語モデルとMistral 7Bの動作を理解する Mistral 7Bのアーキテクチャとベンチマーク Mistral 7Bの使用事例とパフォーマンス 推論とモデルの微調整のためのコードの詳細な解説 この記事はData Science Blogathonの一環として公開されました。 大規模言語モデルとは何ですか? 大規模言語モデルのアーキテクチャは、トランスフォーマーを使用して構築されており、アテンションメカニズムを使用してデータの長距離依存性を捉えます。複数のトランスフォーマーブロックの層には、マルチヘッドのセルフアテンションやフィードフォワードニューラルネットワークが含まれています。これらのモデルはテキストデータで事前学習され、シーケンス内の次の単語を予測することを学習し、言語のパターンを捉えます。事前学習された重みは特定のタスクで微調整することができます。Mistral 7B LLMのアーキテクチャと、その特徴について詳しく見ていきましょう。 Mistral 7Bのアーキテクチャ Mistral 7Bモデルのトランスフォーマーアーキテクチャは、アテンションメカニズムとキャッシュ戦略を使用して、高いパフォーマンスとメモリ使用量を効率的にバランスさせ、より大きなモデルよりも速度と品質で優れた結果を出します。4096ウィンドウのスライディングウィンドウアテンション(SWA)を使用して、各トークンが直前のトークンの一部に注意を払うことで、より長いシーケンスに対するアテンションを最大化します。 特定の隠れ層は、ウィンドウサイズと層の深さによって、入力層のトークンに対して決定された距離からアクセスできます。モデルは、Flash…

AIがフィンテックを向上させる方法:追跡すべき有望な7つのAIパワー産業

ウィリー・サットンはかつてアメリカで最も追われていた逃亡者の1人でしたが、彼がなぜ銀行を強盗したのか尋ねられたとき、彼の答えは非常にシンプルでした「お金があるから」とこれは、フィンテックセクターにおける規制の傾向が増していることについて尋ねる人々に与えられる同じ答えですそして、それが増加していると信じている人々も同じです

「小規模言語モデルにおける意図の調整の解除:Zephyr-7Bの突破を目指した、蒸留された教師あり微調整とAIフィードバックの包括的ガイド」

ZEPHYR-7Bは、AIフィードバック(AIF)データを使用した蒸留直接好み最適化(dDPO)を通じてユーザーの意図整合性に最適化された、小型の言語モデルです。この手法は、人間の注釈なしで意図の整列を効果的に向上させ、7Bパラメータモデルのトップパフォーマンスを実現します。この手法はAIFからの好みデータに依存し、トレーニング時間を最小限に抑え、ファインチューニング中の追加サンプリングは必要ありません。これにより、新たな最先端を樹立しています。 研究者は、ChatGPTなどのLLMの普及と、その派生モデルであるLLaMA、MPT、RedPajama-INCITE、Falcon、Llama 2に取り組んでいます。ファインチューニング、コンテキスト、検索補完生成、および量子化の進歩が強調されています。より小さいモデルのパフォーマンスを向上させるための蒸留技術、モデル評価のツールとベンチマークも議論されています。この研究では、ZEPHYR-7BのパフォーマンスをMTBench、AlpacaEval、HuggingFace Open LLM Leaderboardで評価しています。 この研究では、精度とユーザーの意図の整列を向上させるために、蒸留教師付きファインチューニング(dSFT)を使用した、より小型のオープンLLMの強化方法について検討しています。それは、人間の注釈なしでLLMを整列させるためにdDPOを導入し、教師モデルからのAIFに頼っています。研究者は、dSFT、AIFデータ、およびdDPOを介したMistral-7Bの整列版であるZEPHYR-7Bを紹介し、人間のフィードバックに整列した70Bパラメーターのチャットモデルと同等のパフォーマンスを示しています。この研究は、LLM開発における意図の整列の重要性を強調しています。 この手法では、モデルを高品質のデータでトレーニングするためにdSFTを組み合わせ、応答の好みを最適化するためにdDPOを利用して言語モデルを強化する方法が提案されています。教師モデルからのAIFを使用してユーザーの意図との整列性を改善します。このプロセスでは反復的なセルフプロンプティングを使用してトレーニングデータセットを生成します。その結果得られたZEPHYR-7Bモデルは、dSFT、AIFデータ、およびdDPOを介して達成され、改善された意図の整列性を持つ最先端のチャットモデルを表しています。 7BパラメータモデルであるZEPHYR-7Bは、オープンアクセスのRLHFベースモデルであるLLAMA2-CHAT-70Bを超えて、チャットのベンチマークで新たな最先端を確立しています。AlpacaEvalではGPT-3.5-TURBOとCLAUDE 2と競り合っていますが、数学やコーディングのタスクでは遅れています。7Bモデルの中で、dDPOモデルは優れており、dSFTとXwin-LM dPPOを上回っています。ただし、より大きなモデルは知識集約型のタスクでZEPHYRを上回っています。Open LLM Leaderboardでの評価では、ZEPHYRの多クラス分類タスクにおける強さが示され、ファインチューニング後の思考力と真実性の能力が確認されています。 ZEPHYR-7Bは、意図の整列性を高めるために直接好み最適化を採用しています。この研究は、評価者としてGPT-4を使用する際の潜在的なバイアスを強調し、ユーザーの意図との整列性に対するより小さいオープンモデルの能力を探求することを推奨しています。有害な出力や違法な助言などの安全性に関する考慮事項の欠落について指摘し、この重要な領域における今後の研究の必要性を示しています。 この研究では、将来の研究のいくつかの展望が明らかにされています。有害な出力や違法なアドバイスに対する安全性の考慮事項は、まだ探求されていません。より大きな教師モデルが学生モデルのパフォーマンス向上にどのような影響を与えるかを調査することが提案されています。蒸留における合成データの使用は困難ですが、価値ある研究領域として認識されています。ユーザーの意図に合わせるためのより小さいオープンモデルとその能力のさらなる探求は、可能な進歩を目指しており、広範なベンチマークとタスクでZEPHYR-7Bの能力を包括的に評価することが推奨されています。

見逃せない7つの機械学習アルゴリズム

機械学習アルゴリズムのリストは、データサイエンティストとしての旅を始めるのに最適な出発点です最も一般的なモデルを特定し、適切なアプリケーションで使用することができるはずです

「2023年および2024年に注目すべきトップ7のAIトレンド」

私たちの世界は重要な変化を遂げており、私を含めいくつかの人々は、AIがテクノロジーの領域だけでなく、社会にも深い変革をもたらすと信じていますAIのトレンドは今まで以上に速く変化しています...

このAIニュースレターは、あなたが必要とするすべてです#71

今週、ジョー・バイデン大統領は人工知能の規制を再び注目させるために、人工知能の監督を目的とする行政命令に署名しましたこの指令は様々な政府機関に要請し、…

最新のデータを使ってファンデーションモデルを最新の状態に保つ方法は? AppleとCMUの研究者が、VLMの継続的なトレーニングのための最初のウェブスケールの時系列連続性(TiC)ベンチマークを導入しましたこれには12.7Bのタイムスタンプ付きのイメージとテキストのペアが含まれています

CLIP、Flamingo、およびStable Diffusionなどの大規模なマルチモーダル基盤モデルの貢献により、画像生成とゼロショット汎化の以前に考えられなかった改善が実現し、マルチモーダル学習におけるパラダイムの変革が起こっています。これらのベースラインモデルは通常、大規模なウェブスケールの静的データセットを用いてトレーニングされます。OpenAIのCLIPモデルなどの従来のモデルが、2020年までのインターネットスケールのデータでトレーニングされた場合に、将来のデータでどのように機能するかは不明です。 まず、AppleとCarnegie Mellon Universityの研究者たちは、OpenAIのCLIPモデルが、2022年までの最新のキュレーションされたウェブデータセットを使用して開発されたOpenCLIPリポジトリのモデルと比較して、ロバスト性の点でどのように優れているかを調査しています。CLIPモデルを測るための標準が存在しないため、2014年から2022年までの動的な分類および検索のタスクをカバーするデータセットを作成しました。OpenCLIPモデルはパフォーマンスを維持している一方、OpenAIモデルは2021年から2022年のデータと2014年から2016年のデータとの間で検索パフォーマンスに大きな差があることがわかりました。OpenAIのCLIPモデルはわずかによりロバストであるものの、これはImageNetの分布シフトにおける正確性などの典型的なテストに完全に反映されていません。 彼らの研究は、静的ベンチマーク(ImageNetなど)を使用することには限界があり、モデルはデータの分布が変化するに伴って適応・進化する必要があることを明らかにしました。データの変化に対応するための単純で頻繁な手法の1つは、新しい画像テキストデータを得た場合に再びトレーニングを開始し、新しいCLIPモデルをトレーニングすることです。この方法の理論的な根拠は、既存のモデルから新しい入力にモデルの振る舞いを適応させることはより困難であるというものです。ただし、新たな基盤モデルを始めからトレーニングするのに必要な時間とエネルギーを何度も投資することは現実的ではありません。 最近のCLIPモデルの持続的学習技術に焦点を当てた取り組みは、一つの後続タスクまたは少数のタスクで効率を向上させることを目的としています。最近の研究の一部はこれらの課題に取り組み始めていますが、現在のベンチマークは範囲が狭すぎるか、画像テキストデータが関連していないため、真に有用ではありません。 CLIPモデルの時系列トレーニングへの第一歩として、研究者たちは時間の経過によるデータ分布の自然な変化を観察しました。既存のCommonPoolデータセットに「クロールタイム」データを含めることにより、彼らはCLIPモデルの時系列連続トレーニングのための新たなベンチマークであるTIC-DataCompを確立しました。研究者たちはまた、RedditやFlickrなどから収集したインターネットの大規模データセットを再利用して、新たな目的に使用しました。特に、YFCCとRedcapsが提供する時系列情報を使用して、それぞれTIC-YFCCとTICRedCapsを編集しました。新しいデータセットが利用可能になるたびに、この研究は時間の制約内で機能する持続学習技術を構築することを目指しています。これらの戦略は、新しいデータが受け取られるたびにトレーニングパラメータをリセットし、累積計算予算を新しいモデルに費やすOracleとは逆の方向を示しています。 研究者たちは、TIC-CLIPフレームワークでトレーニングされたモデルのゼロショット評価を行いました。評価には、ImageNetやImageNetの分布シフト、Flickrなどの28の確立された分類および検索タスクが使用されました。最後に、彼らは自身のベンチマークを使用して、リプレイバッファ、学習率スケジュール、ウォームスタート、パッチング、蒸留など、さまざまな持続学習アプローチを設計・テストしました。 チームは、最新のチェックポイントでトレーニングを開始し、過去のすべてのデータをリプレイすることにより、累積技術がOracleと同等のパフォーマンスを2.7倍の計算効率で実現することを示す重要な教訓を得ました。彼らはまた、順次トレーニングのための学習率スケジュールや、静的および動的パフォーマンスのためのバッファサイズの間における興味深いトレードオフを示しました。彼らの結果は、11Mサンプルから3Bまでのデータセットにわたる傾向を強調し、テクニックによって一貫性を持たせました。既存のデータセットに追加で収集されたコードとタイミングデータは、近々公開され、広いコミュニティが提案されたベンチマークを使用できるようにする予定です。研究チームは、この未開拓のトピックに光を当てることで、基盤モデルの持続トレーニングへの道を切り開くことを望んでいます。

「パンダとPythonでデータの整理をマスターするための7つのステップ」

「データの旅を始めるのですか? 以下は、pandasを使ったデータ整理をマスターするための7ステップの学習パスです」

VoAGIニュース、10月27日:データサイエンスをマスターするための5冊の無料の本 • LLMをマスターするための7つのステップ

今週のVoAGIで、大規模言語モデルの学習からLLMアプリの構築と展開までを7つのステップで行いますPython、統計学、線形代数、機械学習、ディープラーニングの学習に役立つ無料の書籍リストもチェックしてくださいさらに、他にもたくさんの情報があります!

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us