Learn more about Search Results 17 - Page 6

このAI論文は、TreeOfLife-10Mデータセットを活用して生物学と保護のコンピュータビジョンを変革するBioCLIPを紹介しています

生態学、進化生物学、生物多様性など、多くの生物学の分野が、研究ツールとしてデジタルイメージおよびコンピュータビジョンを活用しています。現代の技術は、博物館、カメラトラップ、市民科学プラットフォームから大量の画像を分析する能力を大幅に向上させました。このデータは、種の定義、適応機構の理解、個体群の構造と豊富さの推定、生物多様性の監視と保全に活用することができます。 とはいえ、生物学的な問いにコンピュータビジョンを利用しようとする際には、特定のタスクに適したモデルを見つけて訓練し、十分なデータを手動でラベリングすることは、依然として大きな課題です。これには、機械学習の知識と時間が大量に必要とされます。 オハイオ州立大学、マイクロソフト、カリフォルニア大学アーヴァイン校、レンセラーポリテクニック研究所の研究者たちは、この取り組みで生命の木の基礎的なビジョンを構築することを調査しています。このモデルは、実際の生物学的なタスクに一般的に適用できるように、以下の要件を満たす必要があります。まず、一つのクラドだけでなく、様々なクラドを調査する研究者に適用できる必要があります。そして理想的には、生命の木全体に一般化できることが求められます。さらに、生物学の分野では、同じ属内の関連種や、適応度の向上のために他の種の外観を模倣するなど、視覚的に類似した生物と遭遇することが一般的です。生命の木は生物を広義のグループ(動物、菌類、植物など)および非常に細かいグループに分類しているため、このような細かな分類の精度が重要です。最後に、生物学におけるデータ収集とラベリングの高いコストを考慮して、低データの状況(例:ゼロショットまたはフューショット)で優れた結果が得られることが重要です。 数億枚の画像で訓練された現行の汎用ビジョンモデルは、進化生物学や生態学に適用する際に十分な性能を発揮しません。しかし、これらの目標はコンピュータビジョンにとって新しいものではありません。研究者たちは、生物学のビジョン基盤モデルの作成には2つの主な障害があることを特定しています。まず、既に利用可能なデータセットは、サイズ、多様性、またはラベルの精度の点で不十分ですので、より良い事前トレーニングデータセットが必要です。さらに、現在の事前トレーニングアルゴリズムは3つの主要な目標に適切に対応していないため、生物学の独特な特性を活用したよりよい事前トレーニング方法を見つける必要があります。 これらの目標とそれらを実現するための障害を念頭に置いて、チームは以下を提示しています: TREEOFLIFE-10Mという大規模なML対応の生物学画像データセット BIOCLIPはTREEOFLIFE-10M内の適切な分類群を用いてトレーニングされた生命の木を基盤としたビジョンベースのモデルです。  TREEOFLIFE-10Mは、ML対応の広範な生物学画像データセットです。生命の木において454,000の分類群をカバーする10,000,000以上の写真が含まれており、研究者たちによって編成され、最大のML対応生物学画像データセットが公開されました。2.7百万枚の写真は、最大のML対応生物学画像コレクションであるiNat21を構成しています。iNat21やBIOSCAN-1Mなどの既存の高品質データセットもTREEOFLIFE-10Mに組み込まれています。TREEOFLIFE-10Mのデータの多様性の大部分は、新たに選択された写真が含まれているEncyclopedia of Life(eol.org)から得られています。TREEOFLIFE-10Mのすべての画像の分類階層および上位の分類順位は、可能な限り注釈が付けられています。TREEOFLIFE-10Mを活用することで、BIOCLIPや将来の生物学モデルをトレーニングすることができます。 BIOCLIPは、視覚に基づく生命の木の表現です。TREEOFLIFE10Mのような大規模なラベル付きデータセットを用いてビジョンモデルをトレーニングする一般的で簡単なアプローチは、監視付き分類ターゲットを使用して画像から分類指数を予測することを学ぶことです。ResNet50やSwin Transformerもこの戦略を使用しています。しかし、このアプローチは、分類群が体系的に関連している複雑なタクソノミーのシステムを無視し、活用していません。したがって、基本的な監視付き分類を使用してトレーニングされたモデルは、未知の分類群をゼロショット分類することができない可能性があり、トレーニング時に存在しなかった分類群に対してもうまく一般化することができないかもしれません。その代わりに、チームは、BIOCLIPの包括的な生物学的タクソノミーとCLIPスタイルの多モーダルコントラスティブ学習を組み合わせる新しいアプローチに従っています。CLIPコントラスティブ学習目的を使用することで、彼らは分類群の階層をキングダムから最も遠い分類群ランクまでフラット化して、分類名として知られる文字列に関連付けることができます。BIOCLIPは、可視化できない分類群の分類名を使用する際にも、ゼロショット分類を行うことができます。 チームは、混合テキスト型のトレーニング技術が有益であることを提案し、示しています。これは、分類名からの一般化を保ちつつ、複数のテキストタイプ(例:科学名と一般名)を組み合わせたトレーニング中に柔軟性を持つことを意味します。たとえば、ダウンストリームの使用者は一般的な種名を使用し続けることができ、BIOCLIPは非常に優れたパフォーマンスを発揮します。BIOCLIPの徹底的な評価は、植物、動物、昆虫を対象とした10の細かい画像分類データセットと、トレーニング中には使用されなかった特別に編集されたRARE SPECIESデータセットに基づいて行われています。BIOCLIPは、CLIPとOpenCLIPを大きく凌ぎ、few-shot環境では平均絶対改善率17%、zero-shot環境では18%の成績を収めました。さらに、その内在的な分析はBIOCLIPのより優れた一般化能力を説明することができます。これは、生物分類学的階層を遵守した階層的表現を学んでいることを示しています。 BIOCLIPのトレーニングは、数十万の分類群に対して視覚表現を学ぶためにCLIPの目的を利用しているということにもかかわらず、チームは分類に焦点を当てたままです。今後の研究では、BIOCLIPが細かい特徴レベルの表現を抽出できるよう、inaturalist.orgから100百万枚以上の研究用写真を取り込み、種の外見のより詳細なテキスト記述を収集する予定です。

すべての開発者が知るべき6つの生成AIフレームワークとツール

この記事では、トップのジェネラティブAIフレームワークとツールについて探求しますあなたの想像力を解き放ち、ジェネラティブAIの可能性を探究するために必要なリソースを発見してください

「AIアクトの解読」

AI法 [1]は、長く苦痛な過程を経て形成されましたこれは、ヨーロッパの立法プロセスにおける政治の影響と重要性を完璧に示すものですしかし、同時に欠陥があることも問題として浮かび上がります...

ヴィンセント・ファン・ゴッホの復活

パリのオルセー美術館では、ヴィンセント・ファン・ゴッホのレプリカが訪問者とおしゃべりし、彼の生涯や死についての洞察を提供しています

「AIが思考をテキストに変える」

「持ち運び可能で非侵襲的なシステムは、個人の思考をテキストに変換することができます」

「NOAAの古い地球観測衛星が「延長寿命」を得ます」

国立海洋大気庁は、廃止が予定されている極軌道衛星の寿命を延ばすために、クラウドベースのシステムを使用します

「現実の応用における一般線形モデルの自己相関問題の解決方法」

線形回帰分析における最大の問題の1つは自己相関のある残差ですこの文脈で、この記事では線形回帰分析を再考し、Cochrane-Orcutt手続きを解決策として詳しく取り上げます

『ジェネラティブAIの電力消費の定量化』

更新日:2023年12月11日—アナウンスメントにおいてAMDが予想する売上高の倍増を反映するため、アナウンスメントの付録に改訂された分析Generative AIにはグラフィックス処理ユニット(GPU)が必要であり、それらはたくさん必要とされます計算が…

2023年に再訪するトップの生成AI GitHubリポジトリ

はじめに 2023年も終わりに近づき、人工知能の領域は忍び足で進化を続けています。最新の進歩について追いかけることは、動く標的を追うようなものです。幸いにも、GitHubの活気あるエコシステムの中には、貴重な情報源が数多く存在しています。ここでは、2024年を含む将来のAI学習のためのスプリングボードとなる、トップのAI GitHubリポジトリを紹介します。この厳選されたリストは完全ではありませんが、関連性、インパクト、および好奇心を刺激する潜在能力により、それぞれのリポジトリが評価されています。 Hugging Face / Transformers 117k スター | 23.3k フォーク このリポジトリは、自然言語処理(NLP)に興味のある人々にとって宝庫です。BERT、RoBERTa、T5などのさまざまな事前学習済みのTransformerベースのモデル、詳細なドキュメント、チュートリアル、そして活気あるコミュニティがホスティングされています。 主な特徴 幅広い事前学習済みモデル、包括的なドキュメント、活発なコミュニティサポート、多様なアプリケーションの可能性、他のライブラリとの簡単な統合。 このGenerative AI GitHubリポジトリを探索するには、ここをクリックしてください。 Significant Gravitas / AutoGPT 155k スター…

ミストラルAIは、パワフルなスパースな専門家の

人工知能の進展に向けて、革新的なオープンモデルを提供するパイオニアであるMistral AIが、Mixtral 8x7Bを発表しました。この高品質のスパースなエキスパート混合(SMoE)モデルは、オープンウェイトを備え、この分野での重要な飛躍を示しています。伝統的なアーキテクチャやトレーニングパラダイムを逸脱し、Mistral AIは開発者コミュニティに独自のモデルを提供することで、イノベーションと多様なアプリケーションを促進することを目指しています。 Mixtral 8x7Bの概要 Mixtral 8x7Bは、デコーダーのみのモデルであり、スパースなエキスパート混合ネットワークを活用しています。8つの異なるパラメータグループを持ち、フィードフォワードブロックは各層で2つのエキスパートを動的に選択してトークンを処理し、それらの出力を加算的に組み合わせます。この革新的なアプローチにより、モデルのパラメータ数が46.7Bに増加し、コストとレイテンシの制御を維持しながら、12.9Bモデルの速度とコスト効率で動作します。 スパースアーキテクチャによるフロンティアの拡大 Mistral AIは、Mixtralによるスパースアーキテクチャの使用を先駆けており、オープンモデルの限界を押し広げることへの取り組みを示しています。Mixtral内のルーターネットワークは、入力データを効率的に処理し、トークンごとに特定のパラメータグループを選択します。このパラメータの戦略的な利用は、スピードやコストを損なうことなく、性能を向上させます。これにより、MixtralはAIの領域で強力な競合相手となります。 パフォーマンスメトリクス Mixtralは、Llama 2モデルおよびGPT3.5ベースモデルと比較してテストされています。結果は、Mixtralの実力を示し、Llama 2 70Bを上回り、さまざまなベンチマークでGPT3.5と同等以上の性能を発揮しています。品質対推論予算のトレードオフグラフは、Mixtral 8x7Bの効率性を示しており、Llama 2と比較して非常に効率的なモデルの一部となっています。 幻想、バイアス、言語の習得 Mixtralのパフォーマンスの詳細な分析により、TruthfulQA、BBQ、およびBOLDのベンチマークにおけるその強みが明らかになります。Llama 2と比較して、Mixtralは真実性の向上とバイアスの削減を示しています。このモデルは、フランス語、ドイツ語、スペイン語、イタリア語、英語など、複数の言語に精通しています。 また、読んでみてください:GPTからMistral-7Bへ:AI会話のエキサイティングな飛躍 私たちの意見 Mistral…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us