Learn more about Search Results 11 - Page 6

マンバ:シーケンスモデリングの再定義とトランスフォーマーアーキテクチャの超越

「マンバの画期的なシーケンスモデリング手法を探求し、効率的な処理と先進的な状態空間メカニズムにより、従来のモデルを超えてくださいマンバとともに、AIの未来に飛び込んでください」

Sudowriteのレビュー:AIが人間らしい小説を書けるのか?

「AIは本当に人間のように小説を書くことができるのか? Sudowriteの詳細を知り、このSudowriteのレビューで真実を解明しましょう」

2024年にフォローするべきデータサイエンスのトップ12リーダー

データサイエンスの広がりを見据えると、2024年の到来は、革新を牽引し、分析の未来を形作る一握りの著名人にスポットライトを当てる重要な瞬間として迎えられます。『Top 12 Data Science Leaders List』は、これらの個人の卓越した専門知識、先見のリーダーシップ、および分野への重要な貢献を称えるビーコンとして機能します。私たちは、これらの画期的なマインドの物語、プロジェクト、そして先見の見通しをナビゲートしながら、データサイエンスの進路を形作ると約束された航跡を探求します。これらの模範的なリーダーたちは単なるパイオニアにとどまることはありません。彼らは無類のイノベーションと発見の時代へと私たちを導く先駆者そのものです。 2024年に注目すべきトップ12データサイエンスリーダーリスト 2024年への接近とともに、データサイエンスにおいて傑出した専門知識、リーダーシップ、注目すべき貢献を示す特異なグループの人々に焦点を当てています。『Top 12 Data Science Leaders List』は、これらの個人を認識し、注目することで、彼らを思想リーダー、イノベーター、およびインフルエンサーとして認め、来年重要なマイルストーンを達成することが予想されます。 さらに詳細に突入すると、これらの個人の視点、事業、イニシアチブが、さまざまなセクターを横断する複雑な課題に対するメソッドとデータの活用方法を変革することが明らかになります。予測分析の進展、倫理的なAIの実践の促進、または先進的なアルゴリズムの開発など、このリストでハイライトされた個人たちが2024年にデータサイエンスの領域に影響を与えることが期待されています。 1. Anndrew Ng 「AIのゲームにおいて、適切なビジネスコンテキストを見つけることが非常に重要です。私はテクノロジーが大好きです。それは多くの機会を提供します。しかし結局のところ、テクノロジーはコンテクスト化され、ビジネスユースケースに収まる必要があります。」 Dr. アンドリュー・エングは、機械学習(ML)と人工知能(AI)の専門知識を持つ英米のコンピュータ科学者です。AIの開発への貢献について語っている彼は、DeepLearning.AIの創設者であり、Landing AIの創設者兼CEO、AI Fundのゼネラルパートナー、およびスタンフォード大学コンピュータサイエンス学科の客員教授でもあります。さらに、彼はGoogle AIの傘下にある深層学習人工知能研究チームの創設リードでありました。また、彼はBaiduのチーフサイエンティストとして、1300人のAIグループの指導や会社のAIグローバル戦略の開発にも携わりました。 アンドリュー・エング氏は、スタンフォード大学でMOOC(大規模オープンオンラインコース)の開発をリードしました。また、Courseraを創設し、10万人以上の学生に機械学習のコースを提供しました。MLとオンライン教育の先駆者である彼は、カーネギーメロン大学、MIT、カリフォルニア大学バークレー校の学位を保持しています。さらに、彼はML、ロボット工学、関連する分野で200以上の研究論文の共著者であり、Tiime誌の世界で最も影響力のある100人のリストに選ばれています。…

(「AI ga hontōni watashitachi o zenmetsu saseru kanōsei ga aru no ka, shirouto ni yoru gaido」)

「私は法律とビジネス管理の二重の学位を持ち、専門分野は精神健康、ライティングのヒント、自己啓発、生産性、エンターテイメントです私はテクノロジーに詳しくありませんコーディングはできません私は...」

高度なRAGテクニック:イラスト入り概要

この投稿の目標は、利用可能なRAGアルゴリズムとテクニックの概要と説明をすることなので、コードの実装の詳細には立ち入らず、参照のみ行い、それについては放置します

「Githubの使い方?ステップバイステップガイド」というテキスト

GitHubに登録するには、以下の6つの手順を守ってください ステップ1: GitHubにサインアップする ウェブサイトを訪問し、「サインアップ」ボタンをクリックします。 ユーザー名、メールアドレス、パスワードなどの情報を入力します。 入力が完了したら、メールを確認して、無料のGitHubアカウントを入手できます。 https://docs.github.com/en/get-started/quickstart/hello-world ステップ2: GitHub上でリポジトリを作成する GitHub上でリポジトリを作成する プロジェクト用のGitHubリポジトリを作成するには、以下の簡単な手順に従ってください: 1. GitHubページの右上隅に移動し、「+」サインをクリックし、「新しいリポジトリ」を選択します。 2. 「リポジトリ名」ボックスにリポジトリ名を入力します。 3. 「説明」ボックスに簡単な説明を追加します。 4. リポジトリが公開されるか非公開になるかを選択します。 5. 「READMEファイルを追加する」オプションをチェックします。 6. 「リポジトリを作成する」ボタンをクリックします。 このリポジトリは、ファイルの整理と保存、他の人との協力、GitHub上でのプロジェクトのショーケースに使用できます。…

「転移学習を探求しましょう…」(Ten’i gakushū o tankyū shimashou…)

転移学習については、多くの定義があります基本的には、事前学習済みモデルの知識を活用して新しい問題を解決することを指します転移学習には数多くの利点があります...

がん診断の革命:ディープラーニングが正確に識別し再分類することで、肝臓がんの組み合わせを強化された治療判断につながります

“` 肝臓癌は、肝細胞癌(HCC)と肝内胆管癌(ICCA)を含む原発性肝癌は、それぞれ異なる特徴を持つため、重要な課題を抱えています。肝細胞・胆管細胞癌(cHCC-CCA)の出現により、HCCとICCAの特徴を表す特徴を持ち、診断上の複雑さと臨床管理のジレンマが生じています。この稀な病態が正確な治療戦略の派生を複雑化させ、患者の予後に寄与しています。このジレンマに対処するため、本研究では人工知能(AI)の適用により、cHCC-CCA腫瘍を純粋なHCCまたはICCAとして再分類し、改善された予後予測と分子的な洞察を提供することを目指しています。 cHCC-CCAは、肝癌の稀な変異型であり、肝細胞と胆管細胞の形態の組み合わせにより病理学者を困惑させます。複雑なブレンドは診断を難しくし、臨床管理に曖昧さをもたらします。さらに、共識ガイドラインの欠如が治療の決定を複雑化させます。この複雑性は、HCCとICCAの境界が曖昧であり、cHCC-CCAがこれらの実体に類似した遺伝子プロファイルを示すことから、その分子的なアイデンティティについての論争を引き起こします。本研究は、病理学画像解析の強力なツールであるAIを活用し、cHCC-CCA腫瘍をHCCまたはICCAとして識別および再分類することで、臨床的な予後予測および分子的な遺伝子パターンに対する解釈を明確にすることを目指しています。 国際的な研究者チームによるこの研究では、セルフスーパーバイズドフィーチャーエクストラクタと注意機構ベースの集約モデルを組み合わせたAIパイプラインを使用しました。このAIフレームワークは、純粋なHCCとICCAを識別し、発見コホート内で有望な結果を示すことを目指しました。モデルは、クロスバリデーションされた受信者操作特性曲線下の面積(AUROC)が0.99である堅牢な分離能力を示しました。独立したTCGAコホートでの後続の検証では、モデルの有効性が補強され、AUROCが0.94になり、高い汎化能力が示されました。特筆すべきは、AIモデルがICCに似た表現型に近い特徴に強い注目を払っていることであり、微細な組織学的ニュアンスを識別する能力を示しています。 AIモデルの純粋なHCCとICCAの区別能力は、その臨床および分子的な意義の更なる探索を促します。この分割によって、cHCC-CCAと診断された患者に対する治療の効果のギャップを埋めるための正確な予後予測および治療戦略のガイドが可能となります。さらに、ICCに似た特徴への注目は、モデルが異なる組織構造を捉える能力を示しており、cHCC-CCAと既知の肝癌タイプとの病理学的な関連性と一致しています。これらの研究結果は、AIがcHCC-CCAのより正確な診断と予後マーカーの指南において潜在力を持っていることを強調しています。 論文の主なポイント: 診断の潜在能力:AIは、cHCC-CCAをHCCまたはICCAの明確なカテゴリに再分類することで、診断の突破口を提供する可能性を示しています。 臨床的な意義:AIによる分類は、cHCC-CCA患者の個別化された治療戦略と予後予測において有望な成果をもたらします。 分子的な洞察:モデルがICCに似た特徴に注目することは、微細な組織学的構造を捉える能力を示しており、cHCC-CCAと既知の肝癌タイプの間の分子的な類似性に光を当てています。 “`

「アウトライア検出手法の比較」

外れ値検出は、与えられたデータセット内の異常値(珍しい観測値)を特定するための教師なしの機械学習タスクですこのタスクは、私たちの利用可能なデータが多い現実世界のケースで役立ちます…

このAI論文は、デュアル1-Dヒートマップを使用したリアルタイムマルチパーソンポーズ推定の画期的な技術であるRTMOを紹介しています

姿勢推定とは、物体の位置と方向を空間上で決定することを含む分野であり、継続的に新しい手法を開発して精度とパフォーマンスを向上させてきました。清華深圳国際研究大学院、上海AIラボ、南洋理工大学の研究者たちは、最近、新しいRTMOフレームワークを開発することでこの分野に貢献しました。このフレームワークは、姿勢推定の精度と効率を向上させるポテンシャルを持ち、ロボット工学、拡張現実、仮想現実など、さまざまなアプリケーションに大きな影響を与える可能性があります。 RTMOは既存の手法における精度とリアルタイム性のトレードオフを解消するために設計されたワンステージの姿勢推定フレームワークです。RTMOは座標の分類と密な予測モデルを統合し、トップダウンアプローチと同等の精度を実現しながら、高速性を維持することで、他のワンステージの姿勢推定器を凌駕しています。 リアルタイムのマルチパーソン姿勢推定はコンピュータビジョンの課題であり、既存の手法は速度と精度のバランスをとるために支援が必要です。トップダウンアプローチまたはワンステージアプローチのいずれかには、推論時間または精度の制約があります。RTMOはワンステージの姿勢推定フレームワークであり、YOLOアーキテクチャと座標の分類を組み合わせています。RTMOは動的座標分類器と特別な損失関数を用いて課題を解決し、COCOでの高い平均適合度を維持しながら、リアルタイムのパフォーマンスを実現しています。 この研究では、YOLOのようなアーキテクチャを使用し、背骨とハイブリッドエンコーダを持つRTMOというリアルタイムのマルチパーソン姿勢推定フレームワークを提案しています。デュアル畳み込みブロックは各空間レベルでスコアとポーズ特徴を生成します。この手法は動的座標分類器と特別な損失関数を用いて、座標の分類と密な予測モデルの非互換性に対処しています。動的ビンエンコーディングを使用してビンごとの表現を作成し、クラス分類タスクにはガウスラベルスムージングと交差エントロピー損失を用いています。 RTMOは、高い精度とリアルタイム性を備えたワンステージの姿勢推定フレームワークであり、先端のワンステージ姿勢推定器よりも優れた性能を発揮し、同じ背骨を使用しておよそ9倍速く動作します。最大モデルのRTMO-lはCOCO val2017で74.8%のAPを達成し、単一のV100 GPUで秒あたり141フレームを実行します。異なるシナリオで、RTMOシリーズはパフォーマンスと速度で同等の軽量なワンステージ手法を上回り、効率と正確性を示しています。追加のトレーニングデータを使用することで、RTMO-lは最新の81.7の平均適合度を達成します。このフレームワークは、各キーポイントに対して頑強かつコンテキスト感知型の予測を容易にする空間的に正確なヒートマップを生成します。 https://arxiv.org/abs/2312.07526v1 まとめると、この研究の要点は以下の通りです: RTMOは高い精度とリアルタイム性を持つ姿勢推定フレームワークです。 RTMOはYOLOアーキテクチャ内で座標の分類をシームレスに統合しています。 RTMOは、座標ビンを使用した革新的な座標の分類技術を活用し、正確なキーポイントの位置特定を実現しています。 RTMOは、先端のワンステージ姿勢推定器を凌駕し、COCOで高い平均適合度を達成しながらも、大幅に高速です。 RTMOは難しいマルチパーソンのシナリオで優れた性能を発揮し、頑健な、コンテキスト感知型の予測のための空間的に正確なヒートマップを生成します。 RTMOは既存のトップダウンおよびワンステージのマルチパーソン姿勢推定手法のパフォーマンスと速度をバランスさせます。

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us