Learn more about Search Results ドキュメント - Page 6
- You may be interested
- データサイエンスチームの協力のための5つ...
- 「AIが歴史学者たちに過去をより良く理解...
- Intel CPUのNNCFと🤗 Optimumを使用した安...
- 一緒にAIを学びましょう−Towards AIコミュ...
- 「OpenAIのAI検出ツールは、AIによって生...
- 「AIがキーストロークを聞く:新たなデー...
- IPUを使用したHugging Face Transformers...
- この脳AIの研究では、安定した拡散を用い...
- 最も近い近隣法を用いた写真モザイク:デ...
- 2023年のマーケティングにおけるChatGPTの...
- 「セグミンドの生成AIによるエンパワーリ...
- 「マーク・A・レムリー教授による生成AIと...
- 「Google ResearchがMediaPipe FaceStyliz...
- 「戦略的データ分析(パート1)」
- 「OWLv2のご紹介:ゼロショット物体検出に...
「Amazon ComprehendのためのPDFの事前ラベル付けを自動化する」
「Amazon Comprehend」はテキストデータから洞察を得るための事前トレーニング済みおよびカスタムAPIを提供する自然言語処理(NLP)サービスですAmazon Comprehendのお客様は、位置、人名、日付など、ビジネスに特有の興味のあるエンティティを抽出するためのカスタムなる名前エンティティ認識(NER)モデルをトレーニングすることができますカスタムモデルをトレーニングするには、[...]
一緒にAIを学びましょう−Towards AIコミュニティニュースレター#5
おはようございます、AI愛好家の皆さん!今週のポッドキャストのエピソードは必聴で、これまでの24エピソードの中でも一番優れていますグレッグは驚くべき洞察を共有し、起業家だけでなく関係者にも関連する情報です...
すべての開発者が知るべき6つの生成AIフレームワークとツール
この記事では、トップのジェネラティブAIフレームワークとツールについて探求しますあなたの想像力を解き放ち、ジェネラティブAIの可能性を探究するために必要なリソースを発見してください
「2023年のAI タイムライン」
はじめに 人工知能(AI)は、技術的な進歩が人間のつながりの本質と共鳴する形で私たちの日常生活と交差する魅力的な領域です。今年は、単なるアルゴリズムを超えてAIを身近に感じる革新の物語が展開されました。2023年のAIの素晴らしいハイライトを探索しながら、この旅に参加しましょう。 AI 2023年のハイライト 2023年のAIの世界で行われた最大の発見、進歩、および世界的な変革の一部を紹介します。これらの進歩がどのように、技術が私たちの人間の体験にシームレスに統合される未来を形作っているのか、探求してみましょう。 2023年1月のAIハイライト この年は、AIが医療と健康の分野で重要な進展を示しました。MITの研究者はマサチューセッツ総合病院と連携し、CTスキャンに基づいて患者の肺がんのリスクを評価できるディープラーニングモデルを開発しました。また、革命的な進歩として、研究者たちはAIを使ってゼロから人工的な酵素やタンパク質を作り出すことが可能なAIを開発しました。 他にも多くのイノベーションの中で、人工知能は視覚障害のある人々が食料品を見つけるのを手助けするために手杖に統合されました。一方、ビジネスのフロントでは、OpenAIがMicrosoftとの数年間にわたる数十億ドルの取引を通じてAIの開発に大きく投資しました。 2023年2月のAIハイライト 2023年2月には、OpenAIのChatGPTに関する話題が最も盛り上がりました。このAI搭載のチャットボットは、アメリカ合衆国医師資格試験(USMLE)に合格し、その人気は1億人以上のユーザーにまで急上昇しました。 ChatGPTの現象に応えて、GoogleはAI会話の領域に新しい要素となるBard A.I.を導入しました。また、MicrosoftもChatGPTと統合された新しいBing検索エンジンの導入に重要な一歩を踏み出しました。 Metaは、Metaエコシステム内でAIの能力を向上させるというLLaMAを発表しました。一方、Amazon Web Services(AWS)は、一流のAIプラットフォームであるHugging Faceと提携し、AI開発者を支援しました。 画期的な成果として、オックスフォードの研究者たちはRealFusionを示し、単一の画像から完全な360°写真モデルを再構築することができる最新のモデルを実証しました。 2023年2月には、AIの世界は音楽生成の領域にも足を踏み入れました。Google ResearchはMusicLMを紹介し、さまざまなジャンル、楽器、概念で曲を作成できるトランスフォーマーベースのテキストからオーディオへのモデルを提供しました。一方、Baiduの研究者はERNIE-Musicを発表し、拡散モデルを使用して、波形領域での最初のテキストから音楽を生成するモデルを開発しました。これらのモデルは、AIと創造的表現の融合における重要な進歩を示しています。 2023年3月のAIハイライト 2023年3月には、創造的なAIはいくつかの興味深い進展を見せました。AdobeはFireflyというAIをバックアップする画像生成および編集ツールの範囲でGenAIの領域に参入しました。一方、Canvaはユーザー向けにAIパワードの仮想デザインアシスタントとブランドマネージャーを導入しました。 テックジャイアンツのAIプロジェクトは、第1四半期終盤に向けて全力で進展していました。OpenAIはChatGPTとWhisperというテキストから音声へのモデルのためのAPIを発売しました。OpenAIはまた、ChatGPTのためのいくつかのプラグインをリリースし、最も高度なAIモデルであるGPT-4を正式に発表しました。 HubSpotはユーザー向けにChatSpot.aiとContent Assistantという2つの新しいAIパワードツールを導入しました。ZoomはスマートコンパニオンのZoom…
このAI論文は、「Vary」という新しいアプローチを明らかにしています:高度な多言語認識タスクのための大規模なビジョン言語モデルの視覚語彙を拡張するためのアプローチ
大視覚言語モデル(LVLM)は、コンピュータビジョンと自然言語処理を組み合わせて、視覚的なコンテンツのテキストの説明を生成することができます。これらのモデルは、画像のキャプション付け、可視化された質問応答、および画像の検索など、さまざまなアプリケーションで驚異的な進展を遂げています。しかし、その優れたパフォーマンスにもかかわらず、LVLMはまだいくつかの課題に直面しています。特に、密で詳細な知覚を必要とする特殊なタスクにおいて、ビジョンの語彙が制約されているという問題です。 中国科学技術大学、MEGVIIテクノロジー、および中国科学院の研究者たちは、固有の認識力を必要とする特殊なタスクのためにLVLMを強化するVaryという方法を導入しました。Varyは、効率的に新しい特徴を獲得し、詳細な知覚を改善するためのLVLMを活性化します。実験結果は、Varyの効果を示しています。研究者たちは、さらなる探求のためのプラットフォームとしてVaryを提案しています。研究では、GPT-4をトレーニングデータ生成に使用し、Varyの応用範囲をさまざまな視覚タスクに適用することを強調しています。これにより、LVLMの能力が拡張される一方で、元の能力も維持されます。 この研究は、CLIP-VITなどの一般的なビジョン語彙の制約に取り組んでおり、LVLMにおいてビジョン語彙をスケールアップする必要性を提起しています。これにより、外国語のLVLMのテキスト語彙を拡張することに着想を得たVaryという方法を導入しました。Varyは、語彙ネットワークを使用して新しいビジョン語彙を生成し、元の語彙と統合します。これにより、非英語のOCRやチャート理解などの様々なタスクにおけるエンコーディング効率とモデルパフォーマンスが向上します。この研究は、Varyの設計が今後の研究を刺激すると予想しています。 この研究では、Varyの2つの構成「Vary-tiny」と「Vary-base」を紹介しています。細かい知覚に焦点を当てたVary-tinyは、テキスト入力ブランチを持たず、小さなOPT-125Mモデルを使用します。ドキュメントとチャートのデータを正例、自然画像を負例としてトレーニングされます。Vary-tinyの語彙ネットワークは新しいビジョン語彙を生成し、Vary-baseでは元の語彙と統合されます。Vary-baseのトレーニングでは、両方の語彙ネットワークが使用され、重みが固定されますが、LVLMのパラメータと入力埋め込み層が最適化されます。具体的な実装の詳細には、AdamW最適化、余弦退火スケジューラ、特定の学習率が含まれます。ドキュメントとチャートの理解のための合成データが作成されます。 Varyは、複数のタスクで有望なパフォーマンスを発揮し、ドキュメントレベルのOCR、チャート理解、およびMMVetタスクで優れた結果を達成しています。具体的には、DocVQAでは78.2%、MMVetでは36.2%のANLSを達成し、新しいドキュメントの解析機能における能力を示しています。また、Vary-tinyとVary-baseは、ドキュメントOCRタスクで強力な結果を示しており、Vary-baseは他のLVLMを凌駕しています。この研究はVaryの成功を認めつつ、視覚語彙をスケールアップする効果的な改善の必要性を強調しています。 まとめると、この研究の主なポイントは次のように要約されます: 提案: LVLMにおける視覚語彙のスケールアップのための効率的な方法。 手法: 提案された方法は、オリジナルの言語と統合されたネットワークを介して生成された新しいビジョン語彙を導入します。 能力: この方法は、特にドキュメントレベルのOCRやチャート理解のタスクにおいて、詳細な知覚を向上させます。LVLMの元々の機能は維持しながら、素早く新しい特徴を獲得します。 パフォーマンス: さまざまなタスクで有望なスコアが示されており、この方法はドキュメント解析機能で他のLVLMを凌駕しています。
『LLM360をご紹介します:最初の完全オープンソースで透明な大規模言語モデル(LLM)』
“`html オープンソースの大規模言語モデル(LLM)であるLLaMA、Falcon、Mistralなどは、AIのプロフェッショナルや学者向けにさまざまな選択肢を提供しています。しかし、これらのLLMの大部分は、エンドモデルの重みや推論スクリプトなどの一部のコンポーネントだけが利用可能であり、技術的なドキュメントでは、一般的な設計の側面や基本的なメトリックに焦点を絞った内容が多いです。このアプローチでは、LLMのトレーニング手法の明確性が低下し、チームがトレーニング手順のさまざまな側面を継続的に解明するための努力が重複してしまいます。 Petuum、MBZUAI、USC、CMU、UIUC、UCSDの研究者チームが、LLM360を導入しました。これは、エンドツーエンドのLLMトレーニングプロセスを透明で再現可能にすることにより、オープンかつ協力的なAIの研究をサポートするイニシアチブです。LLM360は、トレーニングコードとデータ、モデルのチェックポイント、中間結果などのすべてをコミュニティに提供することを主張する、完全なオープンソースのLLMです。 LLM360に最も近いプロジェクトはPythiaであり、LLMの完全な再現性を目指しています。GPT-JやGPT-NeoXなどのEleutherAIモデルは、トレーニングコード、データセット、中間モデルのチェックポイントと共にリリースされており、オープンソースのトレーニングコードの価値を示しています。INCITE、MPT、OpenLLaMAは、トレーニングコードとトレーニングデータセットがリリースされ、RedPajamaも中間モデルのチェックポイントを公開しています。 LLM360は、AMBERとCRYSTALCODERの2つの7BパラメータLLMをリリースし、そのトレーニングコード、データ、中間チェックポイント、分析も提供します。事前トレーニングデータセットの詳細、データの前処理、フォーマット、データミキシングの比率、LLMモデルのアーキテクチャの詳細については、研究で詳しく説明されています。 この研究では、以前の研究で導入された記憶スコアの使用と、メトリック、データチャンク、チェックポイントの公開により、研究者が対応関係を容易に見つけることができるようになることを示しています。研究ではまた、LLMが事前にトレーニングされたデータを削除することの重要性や、データのフィルタリング、処理、トレーニング順序の詳細についても強調しています。 研究では、ARC、HellaSwag、MMLU、TruthfulQAの4つのデータセットについてのベンチマーク結果が示され、モデルの事前トレーニング中のパフォーマンスが示されています。HellaSwagとARCの評価スコアはトレーニング中に単調に増加し、TruthfulQAのスコアは減少します。MMLUのスコアは最初に減少し、その後成長します。AMBERのパフォーマンスはMMLUなどのスコアで競争力があるものの、ARCでは遅れています。ファインチューニングされたAMBERモデルは、他の類似モデルと比較して強力なパフォーマンスを示します。 LLM360は、オープンソースLLMの完全かつ包括的なイニシアチブであり、オープンソースのLLM事前トレーニングコミュニティ内での透明性を推進するものです。この研究では、AMBERとCRYSTALCODERの2つの7B LLMをトレーニングコード、データ、中間モデルのチェックポイント、分析と共にリリースしています。研究では、チェックポイント、データチャンク、評価結果を公開することにより、包括的な分析と再現性を可能にするため、すべての角度からLLMをオープンソース化することの重要性を強調しています。 “`
「QLoRAを使ってLlama 2を微調整し、AWS Inferentia2を使用してAmazon SageMakerに展開する」
この記事では、パラメータ効率の良いファインチューニング(PEFT)手法を使用してLlama 2モデルを微調整し、AWS Inferentia2上でファインチューニングされたモデルを展開する方法を紹介します AWS Neuronソフトウェア開発キット(SDK)を使用してAWS Inferentia2デバイスにアクセスし、その高性能を活用しますその後、[…]の動力を得るために、大きなモデル推論コンテナを使用します
「AIは詐欺検出にどのように使われていますか?」
西部劇にはガンスリンガー、銀行強盗、賞金が存在しましたが、今日のデジタルフロンティアではアイデンティティ盗難、クレジットカード詐欺、チャージバックが広まっています。 金融詐欺による収益は、数十億ドル規模の犯罪企業となっています。詐欺師の手に渡る「生成AI」は、これをさらに収益化することを約束します。 世界的には、2026年までにクレジットカードによる損失は430億ドルに達する見込みです。これはニルソン・レポートによるものです。 金融詐欺は、ハッキングされたデータをダークウェブから収集してクレジットカードの盗難に利用するなど、さまざまな手法で行われます。「生成AI」を用いて個人情報をフィッシングする場合もあり、仮想通貨、デジタルウォレット、法定通貨間での資金洗浄も行われています。デジタルの裏世界にはさまざまな金融詐欺が潜んでいます。 対応するために、金融サービス企業は詐欺検出にAIを活用しています。なぜなら、これらのデジタル犯罪の多くはリアルタイムで停止し、消費者や金融企業がすぐに損失を止める必要があるからです。 では、詐欺検出にはAIはどのように活用されているのでしょうか? 詐欺検出のためのAIは、顧客の行動と関連、アカウントのパターンや詐欺特性に合致する行動の異常を検出するために、複数の機械学習モデルを使用しています。 生成AIは詐欺の共同パイロットとして活用できる 金融サービスの多くはテキストと数字を扱うものです。生成AIや大規模言語モデル(LLMs)は、意味と文脈を学習する能力を持ち、新しいレベルの出力と生産性を約束するため、産業全体に破壊的な能力をもたらします。金融サービス企業は、生成AIを活用してより賢明かつ能力の高いチャットボットを開発し、詐欺検出を改善することができます。 一方で、悪意のある者は巧妙な生成AIのプロンプトを使用してAIのガードレールを回避し、詐欺に利用することができます。また、LLMsは人間のような文章を生成することができ、詐欺師はタイプミスや文法の誤りのない文脈に沿ったメールを作成することができます。さまざまなバリエーションのフィッシングメールを素早く作成することができるため、生成AIは詐欺行為を実行するための優れた共同パイロットとなります。詐欺GPTなど、生成AIをサイバー犯罪に悪用するためのダークウェブツールもあります。 生成AIは声認証セキュリティにおける金融被害にも悪用されることがあります。一部の銀行は声認証を使用してユーザーを認証しています。攻撃者がボイスサンプルを入手することができれば、ディープフェイク技術を使用して銀行の顧客の声をクローンすることができ、このシステムを破ろうとします。声データは、スパムの電話で集めることができます。 チャットボットの詐欺は、LLMsやその他の技術を使用して人間の行動をシミュレートすることに対する懸念があります。これらはインポスター詐欺や金融詐欺に応用されるディープフェイクビデオと音声クローンのためのものです。米国連邦取引委員会はこの問題に対して懸念を表明しています。 生成AIは不正使用と詐欺検出にどのように取り組んでいるのか? 詐欺審査には強力な新しいツールがあります。マニュアル詐欺審査を担当する従業員は、ポリシードキュメントからの情報を活用するために、バックエンドでRAGを実行するLLMベースのアシスタントのサポートを受けることができます。これにより、詐欺事件がどのようなものかを迅速に判断し、プロセスを大幅に加速することができます。 LLMsは、顧客の次の取引を予測するために採用されており、支払い企業は事前にリスクを評価し、詐欺取引をブロックすることができます。 生成AIはまた、トランザクション詐欺を撲滅するために精度を向上させ、レポートを生成し、調査を減らし、コンプライアンスリスクを軽減するのに役立ちます。 不正防止のための生成AIの重要な応用例の1つとして、「合成データ」の生成があります。合成データは、詐欺検出モデルのトレーニングに使用するデータレコードの数を増やし、詐欺師が最新の手法を認識するための例のバラエティと洗練度を高めることができます。 NVIDIAは、生成AIを活用してワークフローを構築し、情報検索のために自然言語プロンプトを使用するチャットボットと仮想エージェントを作成するためのツールを提供しています。 NVIDIAのAIワークフローを活用することで、様々なユースケースに対して正確な応答を生成するためのエンタープライズグレードの機能を迅速に構築し、展開することができます。これには、ファウンデーションモデル、NVIDIA NeMoフレームワーク、NVIDIA Triton Inference Server、GPUアクセラレートベクトルデータベースが使用され、RAGによって強化されたチャットボットが展開されます。 安全性に焦点を当てた産業では、悪用されにくいように生成AIを保護するための取り組みが行われています。NVIDIAはNeMoガードレールをリリースし、OpenAIのChatGPTなどのLLMsによって動作するインテリジェントアプリケーションが正確で適切、トピックに即して安全であることを確保するために役立てています。…
BERTopic(バートピック):v0.16の特別さは何なのでしょうか?
私のBERTopicへの野望は、重要な柔軟性とモジュール性を提供することにより、トピックモデリングのための一括ショップにすることですこれは過去数年間の目標であり、リリースによって達成されました...
2023年に再訪するトップの生成AI GitHubリポジトリ
はじめに 2023年も終わりに近づき、人工知能の領域は忍び足で進化を続けています。最新の進歩について追いかけることは、動く標的を追うようなものです。幸いにも、GitHubの活気あるエコシステムの中には、貴重な情報源が数多く存在しています。ここでは、2024年を含む将来のAI学習のためのスプリングボードとなる、トップのAI GitHubリポジトリを紹介します。この厳選されたリストは完全ではありませんが、関連性、インパクト、および好奇心を刺激する潜在能力により、それぞれのリポジトリが評価されています。 Hugging Face / Transformers 117k スター | 23.3k フォーク このリポジトリは、自然言語処理(NLP)に興味のある人々にとって宝庫です。BERT、RoBERTa、T5などのさまざまな事前学習済みのTransformerベースのモデル、詳細なドキュメント、チュートリアル、そして活気あるコミュニティがホスティングされています。 主な特徴 幅広い事前学習済みモデル、包括的なドキュメント、活発なコミュニティサポート、多様なアプリケーションの可能性、他のライブラリとの簡単な統合。 このGenerative AI GitHubリポジトリを探索するには、ここをクリックしてください。 Significant Gravitas / AutoGPT 155k スター…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.