Learn more about Search Results コンポーネント - Page 6
- You may be interested
- 「Nvidia Triton Inference Serverを使用...
- 希望、恐れ、そしてAI
- プライバシー保護のためのAIとブロックチ...
- データサイエンティストになりたいですか...
- ODSC West 2023の基調講演:責任ある生成A...
- 大規模言語モデルの高速推論:Habana Gaud...
- 「本番環境で機械学習モデルを導入しない...
- 文法AIの向上にBERTを活用する:スロット...
- ハーバード大学の新しいコンピューターサ...
- SynthIA(Synthetic Intelligent Agent)7...
- 「ジオスペーシャルデータの同時変化を示...
- 『ニューラルネットワークモデルの背後に...
- *args, **kwargs、そしてその間のすべて
- 偉大さの開放:アレクサンダー大王の創造...
- 「チップの戦いに勝ちたいですか?たくさ...
ODSCのAI週間まとめ:12月8日の週
人工知能は、報道を通じて光の速さで進化してきましたODSCで取り上げた内容や他のニュースを振り返り、見逃してしまった話題も紹介しますこれにより、あなたはAIについての最新情報を把握できるでしょう
『UltraFastBERT:指数関数的に高速な言語モデリング』
言語モデルと生成型AIは、その能力で有名であり、AI業界では注目されている話題です世界中の研究者たちは、効果と能力を向上させていますこれらのシステムは、通常、深層学習モデルであり、広範なラベル付きデータで事前学習され、自己注意のためのニューラルネットワークを組み込んでいますフィードフォワード、再帰、埋め込み、注意の各種レイヤーを使用して、入力テキストを処理し、[...]を生成します
最も近い近隣法を用いた写真モザイク:デジタルアートのための機械学習
ここに例があります!ズームインアニメーションフルスクリーンでの視聴をおすすめします(動画提供者の著者)技術革新は急速に進んでおり、デジタルストレージは非常に安くてアクセスしやすくなりましたさらに、ほとんどの人が高画質の画像を撮影できるカメラを搭載したスマートフォンを持っています大多数の人は...
「自律AIエージェントを使用してタスクを自動化するための10の方法」
はじめに テクノロジーのダイナミックな風景の中で、自律型AIエージェントは変革的な存在として登場し、データと人工知能とのやり取りの方法を変えつつあります。この魅力的な領域に深入りするにつれて、これらのエージェントが単なるプログラム以上のものであり、私たちの日常生活におけるAIの統合においてパラダイムシフトを表していることが明らかになります。本記事では、現在利用可能な最も優れた自律型AIエージェントの中から10つを紹介します。これらのAIエージェントがあなたに何ができるのか、さらに詳しく知るために読み続けてください。 自律型AIエージェントとは何ですか? 自律型AIエージェントは、持続的な人間の介在なしにタスクを実行するために独立して動作する高度な人工知能システムです。これらのエージェントは、機械学習と自動化を活用して、異なる領域でタスクの分析、学習、および実行を行います。単純なタスク自動化ツールから、自然言語の理解、意思決定、および新しい情報への適応能力を持つ洗練されたシステムまで、さまざまな範囲のエージェントが存在します。自律型AIエージェントは、技術がさまざまな日常タスクとの相互作用を革新する上で重要な役割を果たしています。 自律型AIエージェントはどのように動作するのですか? 自律型AIエージェントが具体的に何をするか、またどのようにしてタスクを自己で実行できるのかを疑問に思っていましたか?これらの高度なAIモデルは、複雑な指示や目標をより小さな、シンプルなタスクに分解し、構造化されたプロセスでそれらを実行するように設計されています。また、特定のタスクの自動化やループでの操作も可能です。以下は、ほとんどの自律型AIエージェントの基本的なワークフローです。 タスクの定義:まず、AIエージェントが明確な指示、締切、および優先順位を持つタスクを作成します。 タスクの優先順位付け:次に、緊急性と重要性に基づいてタスクの優先順位を付けるためにAIアルゴリズムを使用します。 タスクを自動化:重複するタスクを効率的に実行するために、それらをAIモデルに委任します。 進捗の監視:プロセスの設定とタスクの実行後、これらのタスクの進捗状況を追跡し、リアルタイムで更新を受け取ります。 相互作用:これらのエージェントは、自然言語のコマンドを使用して簡単にタスクを作成、変更、管理することもできます。 トップ自律型AIエージェント 以下に、10の最も優れた自律型AIエージェントとそれぞれの説明、利点、および具体例をご紹介します。 1. AgentGPT AgentGPTは、多機能でカスタマイズ可能なオープンソースの自律エージェントです。旅行の計画、メールの作成、クリエイティブなテキスト形式の生成など、幅広いタスクを実行することができ、さらに追加の機能や機能を追加することでカスタマイズすることができます。AgentGPTは、名前と目標を追加し、展開ボタンをクリックするだけで使用することができ、コーディングは不要です。複雑なタスクをより小さなサブタスクに分解し、最小限の人間の関与で主目標を達成するために反復的なプロンプトを使用します。 利点 時間と労力を節約:AgentGPTは、あなたがたくさんの時間と労力を要するタスクを自動化することができます。 生産性の向上:タスクの自動化により、重要なことに集中するために時間を確保することができます。 楽しむ時間を増やす:退屈でつまらないタスクを自動化することにより、楽しい時間を過ごすことができます。 より創造的になる:新しいアイデアや可能性を生成することによって、より創造的になることができます。 具体例 ハワイ旅行の計画:AgentGPTは、フライト、宿泊施設、アクティビティなど、詳細なハワイ旅行を計画するのに役立ちます。 メールの作成:件名、本文、署名を含めたメールの作成をサポートします。…
「SageMakerエンドポイントとしてカスタムMLモデルを展開する」
「機械学習(ML)モデルを開発するには、データ収集からモデルの展開までの重要なステップがありますアルゴリズムの改善やテストを通じてパフォーマンスを確認した後、最後の重要なステップは...」
Amazon AlexaのAI研究者がQUADRoを発表:QAシステムの向上に向けた画期的なリソースで、440,000以上のアノテーション付きの例があります
人工知能(AI)と機械学習(ML)の能力は、あらゆる可能な産業に進出することを成功裏に可能にしました。最近では、大規模言語モデル(LLM)と質問応答システムの導入により、AIコミュニティは大きな進歩を遂げています。事前計算されたデータベースから効率的に応答を取得することは、自動質問応答(QA)システムの開発における一般的なステップです。 主なQAパラダイムには、オープンブック型とクローズドブック型の2つがあります。オープンブック型、またはリトリーブアンドリード型は、適切な素材を大量の文書コーパス、頻繁にインターネットから取得する2つの手順を経て、異なるモデルや手法を適用して取得された素材から解決策を取り出す手法です。一方、クローズドブック型は最近の手法であり、外部のコーパスを利用せずにT5などのSeq2Seqモデルを基にしたモデルを訓練することで、結果を生成します。 クローズドブック技術は優れた結果を示しているものの、多くの産業アプリケーションに対してリソースが過剰であり、システムのパフォーマンスに重大なリスクをもたらす可能性があります。質問応答型データベース(DBQA)は、パラメータや大規模なコーパスの情報に頼るのではなく、事前生成された質問応答のデータベースから応答を取得する方法です。 これらのシステムの主要な部分は、質問と回答のデータベース、データベースのクエリに対する検索モデル、および最適な回答を選ぶランキングモデルです。DBQA技術により、迅速な推論と再学習モデルなしで新しいペアを追加できる能力が可能となり、新しい情報を導入することができます。 DBQA技術の課題の一つは、検索およびランキングモデルの開発における充分なトレーニングデータの不足です。既存のリソースはスコープと内容の面で不足しており、注釈プロセスの品質を向上させる必要があるものや、質問と質問の類似性に焦点を当て、回答を無視するものが多数存在しています。 これらの課題に対処するため、研究者チームは質問応答データベースの検索に関するデータセットとモデルであるQUADRoを提案しました。これは訓練と評価のために特別に作成された新しいオープンドメインの注釈リソースです。リポジトリの15,211の入力質問には、各質問に関連する30の質問応答ペアがあります。このコレクションには合計で443,000の注釈付きサンプルが含まれています。入力クエリに対する各ペアの重要性を示すバイナリインジケータがラベル付けされています。 研究チームはまた、このリソースの品質と特性をいくつかの重要なQAシステムコンポーネントに関して評価するための徹底した実験も行いました。これらの要素には、トレーニング方法、入力モデルの構成、および回答の関連性が含まれます。実験は、このデータセットで訓練されたモデルの挙動とパフォーマンスを検討することで、関連する応答を取り出すために提案された方法がどれだけうまく機能するかを示しました。 まとめると、この研究は、自動品質保証システムにおけるトレーニングとテストデータの不足を解決するために、有用なリソースを導入し、リソースの属性を慎重に評価することで、包括的な理解を支援しています。トレーニング戦略と回答の関連性のような重要な要素に重点を置くことで、評価が補完されます。
エンドツーエンドの労働力管理を取得する: Amazon ForecastおよびAWS Step Functions
この記事は、Nafi Ahmet Turgut、Mehmet İkbal Özmen、Hasan Burak Yel、Fatma Nur Dumlupınar Keşir、Mutlu PolatcanおよびGetirのEmre Uzel共著によるゲスト投稿ですGetirは、超高速の食品宅配の先駆けですこのテクノロジー企業は、最後の一マイル配送を飛躍的に改革し、数分で食品を届ける提案をしましたGetirは2015年に設立され、運営しています...
マルチモーダルAIがデジタルのつながりを作り出す
「複数の要素とデータストリームを組み合わせることにより、マルチモーダルAIはよりスマートで人間らしいシステムの可能性を提供します」
「ノーコードアプリビルダーのトップ10(2023年12月)」
テクノロジーの絶えず進化する風景の中で、ノーコードアプリビルダーの台頭は、アプリ開発の民主化の証ですかつてはベテランプログラマーやソフトウェア開発者の領域にのみデジタルソリューションを作成する時代が終わりましたノーコードプラットフォームは、起業家やビジネスプロフェッショナル、クリエイティブな思考を持つ人々に扉を開いています[…]
マイクロソフトと清華大学の研究者は、「SCA(Segment and Caption Anything)を提案し、SAMモデルに地域キャプションの生成能力を効率的に装備する」と述べています
コンピュータビジョンと自然言語処理の交差点では、画像内のエンティティの領域キャプションの生成の課題に常に取り組んできました。この課題は、トレーニングデータにセマンティックラベルが存在しないことにより、特に複雑です。研究者は、このギャップに効率的に対処する方法を追求し、モデルが多様なイメージ要素を理解し、説明するための方法を見つけることを目指しています。 Segment Anything Model(SAM)は、強力なクラス非依存セグメンテーションモデルとして登場し、さまざまなエンティティをセグメント化する驚異的な能力を示しています。ただし、SAMは領域キャプションを生成する必要があり、その潜在的な応用範囲が制限されます。そのため、マイクロソフトと清華大学の研究チームは、SAMの能力を効果的に活用するためにSCA(Segment and Caption Anything)という解決策を提案しました。SCAは、SAMの重要な拡張と見なすことができます。それは効率的に領域キャプションを生成する能力をSAMに与えるように設計されています。 ブロックの構築に類似して、SAMはセグメンテーションのための堅牢な基盤を提供し、SCAはこの基盤に重要なレイヤーを追加します。この追加機能は、軽量のクエリベースのフィーチャーミキサーの形で提供されます。従来のミキサーとは異なり、このコンポーネントはSAMと因果言語モデルを結びつけて、領域固有の特徴を言語モデルの埋め込み空間と整合させます。この整合は、後続のキャプション生成に重要であり、SAMの視覚的理解と言語モデルの言語的能力との相乗効果を生み出します。 SCAのアーキテクチャは、画像エンコーダ、フィーチャーミキサー、マスクまたはテキストのためのデコーダヘッドの3つの主要なコンポーネントの熟慮された組み合わせです。モデルの要となるフィーチャーミキサーは、軽量な双方向トランスフォーマーです。これはSAMと言語モデルを結びつける結合組織として機能し、領域固有の特徴を言語の埋め込みと最適化する役割を果たします。 SCAの主な強みの一つは、効率性です。数千万個のトレーニング可能なパラメータを持つ、トレーニングプロセスがより高速かつスケーラブルになります。この効率性は、SAMのトークンをそのまま保持しながら、追加のフィーチャーミキサーにのみ焦点を当てた戦略的な最適化から生じます。 研究チームは、領域キャプションデータの不足を克服するために、弱い監督による事前トレーニング戦略を採用しています。このアプローチでは、モデルは物体検出とセグメンテーションタスクで事前トレーニングされ、完全な文章の説明ではなくカテゴリ名を含むデータセットを活用します。このような弱い監督による事前トレーニングは、限られた領域キャプションデータを超えて視覚的概念の一般的な知識を転送するための実用的な解決策です。 SCAの有効性を検証するためには、比較分析、さまざまなビジョンラージランゲージモデル(VLLM)の評価、およびさまざまな画像エンコーダのテストが行われています。モデルはリファリング式生成(REG)タスクで強力なゼロショットパフォーマンスを示し、その適応性と汎化能力を示しています。 まとめると、SCAはSAMの堅牢なセグメンテーション能力をシームレスに拡張する有望な進歩です。軽量なフィーチャーミキサーの戦略的な追加とトレーニングの効率性とスケーラビリティにより、SCAはコンピュータビジョンと自然言語処理の持続的な課題に対する注目すべき解決策となります。
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.