Learn more about Search Results がん - Page 68

医療分野におけるAI-革新的なユースケースとアプリケーション

人工知能(AI)は、数多くの産業を変革する画期的な技術として現れ、医療業界も例外ではありませんAIは、その能力によって医療現場を変革しています...

AIにおいて大胆であることは、最初から責任を持つことを意味します

GoogleのJames Manyika氏は、Googleが人々と社会に利益をもたらすためにAIを責任ある形で適用する方法について話しています

Word2Vec、GloVe、FastText、解説

コンピューターは我々と同じように単語を理解することができませんコンピューターは数字を扱うことが好きですですから、コンピューターが単語とその意味を理解するのを助けるために、私たちは「埋め込み」と呼ばれるものを使用しますこれらの埋め込みは…

デジタルルネッサンス:NVIDIAのNeuralangelo研究が3Dシーンを再構築

NVIDIA Researchによる新しいAIモデル、Neuralangeloは、ニューラルネットワークを使用して3D再構築を行い、2Dビデオクリップを詳細な3D構造に変換し、建物、彫刻、およびその他の現実世界のオブジェクトのリアルなバーチャルレプリカを生成します。 ミケランジェロが大理石のブロックから驚くべきリアルなビジョンを彫刻したように、Neuralangeloは複雑なディテールと質感を持つ3D構造を生成します。クリエイティブなプロフェッショナルは、これらの3Dオブジェクトをデザインアプリケーションにインポートし、アート、ビデオゲーム開発、ロボット工学、および産業用デジタルツインに使用するためにさらに編集することができます。 Neuralangeloは、屋根の瓦、ガラスの板、滑らかな大理石などの複雑な素材の質感を、従来の手法を大幅に上回る精度で2Dビデオから3Dアセットに変換することができます。この高い信頼性により、開発者やクリエイティブなプロフェッショナルは、スマートフォンでキャプチャされた映像を使用してプロジェクトに使用できる仮想オブジェクトを迅速に作成できます。 「Neuralangeloが提供する3D再構築機能は、クリエイターにとって大きな利益になります。現実世界をデジタル世界に再現するのを支援することで、開発者は小さな像や巨大な建築物などの詳細なオブジェクトを仮想環境にインポートできるようになります。」と、研究のシニアディレクターであり、論文の共著者でもあるMing-Yu Liu氏は述べています。 デモでは、NVIDIAの研究者が、ミケランジェロのダビデ像やフラットベッドトラックなどといったアイコニックなオブジェクトを再現する方法を紹介しました。Neuralangeloは、建物の内部および外部も再構築することができ、NVIDIAのベイエリアキャンパスの公園の詳細な3Dモデルで実証されました。 ニューラルレンダリングモデルが3Dで見る 3Dシーンを再構築するための以前のAIモデルは、繰り返しのテクスチャパターン、同質的な色、および強い色の変化を正確に捉えることができませんでした。Neuralangeloは、これらの微細なディテールを捉えるために、NVIDIA Instant NeRFの背後にある技術であるインスタントニューラルグラフィックスプリミティブを採用しています。 さまざまな角度から撮影されたオブジェクトまたはシーンの2Dビデオを使用して、モデルは異なる視点を捉えたいくつかのフレームを選択します。これは、アーティストが対象を多角的に考慮して深度、サイズ、および形状を把握するのと同じです。 フレームごとのカメラ位置が決定されたら、NeuralangeloのAIはシーンの大まかな3D表現を作成します。これは、彫刻家が主題の形を彫刻し始めるのと同じです。 次に、モデルはレンダリングを最適化してディテールをシャープにします。これは、彫刻家が石を注意深く削って布の質感や人物の形を再現するのと同じです。 最終的な結果は、仮想リアリティアプリケーション、デジタルツイン、またはロボット工学の開発に使用できる3Dオブジェクトまたは大規模なシーンです。 CVRPでNVIDIA Researchを見つける、6月18日〜22日 Neuralangeloは、6月18日から22日にバンクーバーで開催されるコンピュータビジョンとパターン認識のカンファレンス(CVRP)で発表されるNVIDIA Researchの約30のプロジェクトの1つです。これらの論文は、ポーズ推定、3D再構築、およびビデオ生成などのトピックをカバーしています。 これらのプロジェクトの1つであるDiffCollageは、長いランドスケープ方向、360度パノラマ、およびループモーション画像を含む大規模なコンテンツを作成する拡散法です。標準的なアスペクト比の画像のトレーニングデータセットをフィードすると、DiffCollageはこれらの小さな画像をコラージュのピースのように扱い、より大きなビジュアルのセクションとして扱います。これにより、拡散モデルは、同じスケールの画像のトレーニングを必要とせずに、継ぎ目のない大規模なコンテンツを生成できるようになります。 この技術は、テキストプロンプトをビデオシーケンスに変換することもできます。これは、人間の動きを捉える事前訓練された拡散モデルを使用して実証されました。 NVIDIA Researchについてもっと学ぶ。

Rendered.aiは、合成データの生成にNVIDIA Omniverseを統合します

Rendered.aiは、プラットフォームとして提供される合成データ生成(SDG)により、開発者、データサイエンティスト、その他の人々のAIトレーニングを簡素化しています。 コンピュータビジョンAIモデルのトレーニングには、膨大で高品質で多様で偏りのないデータセットが必要です。これらを入手することは困難でコストがかかるため、AIの需要と供給の双方が増大する中で特に課題になります。 Rendered.aiのプラットフォームは、3Dシミュレーションから作成された物理的に正確な合成データを生成することにより、コンピュータビジョンモデルのトレーニングに役立ちます。 「実世界のデータは、AIモデルを一般化するために必要なすべてのシナリオとエッジケースをキャプチャできないことがあり、それがAIおよび機械学習エンジニアにとってキーとなるSDGの場所です」と、シアトルの郊外であるベルビューに拠点を置くRendered.aiの創設者兼CEOであるNathan Kundtzは述べています。 NVIDIA Inceptionプログラムの一員であるRendered.aiは、オンライントレーニング、ロボティクス、自律走行などの多くのアプリケーションにラベル付き合成データを生成することができるOmniverse Replicatorをプラットフォームに統合しました。 Omniverse Replicatorは、Universal Scene Description(「OpenUSD」)、Material Definition Language(MDL)、およびPhysXを含む3Dワークフローのオープンスタンダードに基づいて構築され、仮想世界の風景と植生のモデリング、衛星画像のオブジェクト検出、さらには人間の卵細胞の生存可能性のテストに使用されています。 Omniverse Replicatorを使用して生成された合成画像。Rendered.ai提供。 Rendered.aiは、Omniverse ReplicatorのRTXアクセラレーション機能を活用することで、レイトレーシング、ドメインランダム化、マルチセンサーシミュレーションなどの機能を利用することができます。コンピュータビジョンエンジニア、データサイエンティスト、およびその他のユーザーは、クラウド上の簡単なウェブインターフェイスを介して合成データを迅速かつ簡単に生成することができます。 「AIをトレーニングするために持つ必要があるデータは、実際にAIのパフォーマンスを支配する要因です」とKundtzは述べています。「Omniverse ReplicatorをRendered.aiに統合することで、さまざまな産業分野でより大きく、より優れたAIモデルをトレーニングするために合成データを利用するユーザーにとって、新しいレベルの簡単さと効率が実現されます。」 Rendered.aiは、カナダのバンクーバーで6月18日から22日まで開催されるコンピュータビジョンとパターン認識のカンファレンス(CVPR)で、Omniverse Replicatorとのプラットフォーム統合をデモンストレーションします。 クラウドでの合成データ生成 AWS…

焼け落ちた炎:スタートアップが生成AI、コンピュータビジョンを融合して山火事と戦う

カリフォルニアの大規模な山火事によって空がオレンジ色に変わったとき、あるスタートアップはコンピュータビジョンと生成AIを融合して対抗した。 「2020年の山火事では、非常に個人的な問題になったため、我々は消防当局にどのように支援できるか尋ねました」と、コンピュータビジョンのシリコンバレーのリーダーであるChoochのトルコ生まれのCEOであるエムラー・グルテキンは語った。 カリフォルニアの公益事業および消防サービスによると、既存の山火事検出システムから週に最大2,000件の誤検知が発生していた。誤った予測は、霧、雨、レンズの汚れなどから来ていた。 そこで、Choochはパイロットプロジェクトで、消防用のカメラネットワークに火災検出ソフトウェアをリンクさせた。15分ごとにスナップショットを分析して、煙や火災の兆候を探した。 生成AIがコンピュータビジョンを強化する その後、ChoochのCTOであるエムラーの兄でありソフトウェアの達人でもあるハカン・グルテキン率いるチームがアイデアを出した。 彼らは、各画像の説明を自動的に作成する生成AIツールを作成しました。これにより、レビュアーが煙が存在するかどうかを識別できるようになりました。誤検知は、週に2,000件から8件に減少しました。 Choochは、悪天候や汚れたカメラレンズでも煙や火災を検出できます。 「消防署長たちは、モニタリングセンターでこの技術を導入し、何ができるかに興奮していました」と、Choochの社長であるマイケル・リュウは、最近のウェビナーでこのプロジェクトについて説明しました。 Choochの生成AIツールにより、カリフォルニアのカーン郡の消防士たちは、リアルタイムでアラートが表示されるスマートフォンやPCのダッシュボードを使用して山火事を素早く検出できます。 2020年、カリフォルニアでは9,900件の山火事が発生し、4.3百万エーカーの森林を焼失し、190億ドルの損失を被りました。1つの火災を制御下におさめることで、50年間の山火事検出システムの費用が回収できると、同社は推定しています。 ジェンAIのビジョン ChoochのCEOは、これが今後の展開になると語っています。 エムラー・グルテキン 「大規模言語モデルとコンピュータビジョンの融合により、よりパワフルで正確な製品を容易に展開できるようになります」とグルテキンは語りました。 たとえば、公益事業は、ソフトウェアをドローンや固定カメラに接続して、コンデンサの腐食や電力線に侵入する植生を検出することができます。 この技術は、Choochが山火事の検出と戦闘に関する1100万ドルのXprizeチャレンジに参加することでさらに検証される可能性があります。スポンサーには、PG&EやNVIDIAと別の協力関係で山火事を予測し対応するAIラボを構築しているロッキード・マーティンが含まれています。 PCやスマートフォンのダッシュボードでは、Choochのソフトウェアからのリアルタイムアラートが更新されます。 Choochは、製造業、小売業、セキュリティなどの様々な課題にその技術を適用しています。 例えば、あるメーカーは、製品が出荷される前に欠陥を検出するためにChoochのモデルを使用しています。欠陥を20%削減するだけで、システムの費用が何倍にもなります。 パートナーシップの始まり 2019年に、米国政府の潜在的な顧客が、NVIDIA GPU上で計画しているエッジ展開に対するサポートを求めました。Choochは、先進的なスタートアップを育成する無料のプログラムであるNVIDIA Inceptionに参加しました。…

困難な就職市場を乗り切るために私が学んだ4つのキャリアレッスン

このブログでは、60日間の移民政策、レイオフ、健康問題などの困難な状況の中で、データサイエンスの役割を探している間に学んだ4つの貴重な教訓を共有しています私の希望は、最近のレイオフや移民の課題に直面している人々に洞察や指導を提供することです

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us