Learn more about Search Results メール - Page 67
- You may be interested
- 韓国の研究者がVITS2を提案:自然さと効率...
- 「リモートワーク技術の探究:トレンドと...
- AudioPaLMの紹介:Googleの言語モデルにお...
- テンセントAIラボは、進行的条件拡散モデ...
- SIGGRAPH特別講演:NVIDIAのCEOがLAショー...
- 言語学習モデルにおけるOpenAIの関数呼び...
- 「時間管理のための15の最高のChatGPTプロ...
- StableCodeについて知っておくべきこと:S...
- 「人類を800年進化させるAI、GNoMe」
- 「プロンプトエンジニアリングに入るため...
- 「NPって何? 最適化問題の複雑性タイプを...
- ChatGPTカスタム指示の使用方法(6つのユ...
- 「アメリカでデータアナリストになる方法」
- 「アジア太平洋地域でAIスタートアップを...
- Pythonを使用した感情分析の始め方
AIの変革の道:OpenAIのGPT-4を通してのオデッセイ
ソフトウェア開発者は、OpenAIのGPT-4を使用して複数のアプリケーションを生成し、時間の節約、コストの削減、パーソナライズの向上により、アプリ開発を革新します
データサイエンティストとして成功するために必要なソフトスキル
データサイエンティストとしてのキャリアを構築する際には、ハードスキルにフォーカスすることが簡単です非線形カーネルを持つSVMのような新しいMLアルゴリズムを学ぶことや、新しいソフトウェアを学びたいと思うかもしれません
Amazon SageMaker 上で MPT-7B を微調整する
毎週新しい大規模言語モデル(LLM)が発表され、それぞれが前任者を打ち負かして評価のトップを狙っています最新のモデルの1つはMPT-7Bです
NYUとNVIDIAが協力して、患者の再入院を予測するための大規模言語モデルを開発する
退院は患者にとって重要なマイルストーンですが、時には回復への道のりの終わりではありません。米国では、初回退院後30日以内に約15%の入院患者が再入院することがあり、患者と病院の両方にとってより悪い結果や高いコストが伴うことがしばしばあります。 ニューヨーク大学の学術医療センターであるNYUランゴーンヘルスの研究者は、NVIDIAの専門家と協力して、患者の30日間の再入院リスクや他の臨床的な結果を予測する大規模言語モデル(LLM)を開発しました。 NYUランゴーンヘルスの6つの入院施設に展開されたNYUTronモデルは、今日発表された科学誌ネイチャーに掲載され、AIによる洞察力を提供することで、再入院の可能性を低減する臨床介入が必要な患者を特定する医師を支援します。 「患者を退院させる際には、再入院が必要になることは予想されません。また、もしそうだった場合は、病院に長く入院させる必要があるかもしれません」と、NYUグロスマン医学部の放射線科と脳神経外科の助教授であり、NYUTronの主要な協力者の一人であるエリック・オーマン博士は述べています。「AIモデルの分析を使用することで、私たちはクリニシャンに再入院のリスクを予測し、防止または解決するための手段を提供できるようになるでしょう。」 このモデルはNYUの医療システムで50,000人以上の患者に適用され、再入院リスクの予測結果が医師に電子メール通知で共有されています。オーマン氏のチームは、NYUTronの分析に基づく介入が再入院率を減らすかどうかを検証する臨床試験を計画しています。 急速な再入院の脅威に立ち向かう 米国政府は、30日間の再入院率を医療の質の指標として追跡しています。再入院率が高い医療機関には罰金が科され、これにより病院が退院プロセスを改善するように刺激されます。 最近退院した患者が再び入院する必要がある理由はたくさんあります。例えば、感染症、抗生物質の過剰処方、早すぎる手術ドレーンの除去などがあります。これらのリスク要因が早期に発見されれば、医師は治療計画を調整したり、患者を長期入院させたりすることで介入することができます。 「患者の再入院を予測する計算モデルは、1980年代から存在していますが、これを自然言語処理のタスクとして、臨床テキストの健康システム規模のコーパスが必要となるものとして扱っています」と、オーマン博士は述べています。「私たちは、電子健康記録の非構造化データを使用してLLMをトレーニングし、人々が以前に考慮していなかった洞察力を捕捉できるかどうかを確認しました。」 NYUTronは、NYUランゴーンヘルスの10年間の健康記録、約4十億語の臨床ノート、約40万人の患者を表す大量のデータによって事前トレーニングされました。このモデルは、再入院を予測するための最先端の機械学習モデルよりも10%以上の精度改善を達成しました。 LLMが初期の使用ケースで30日間の再入院を予測するためにトレーニングされた後、チームは1週間ほどで他の4つの予測アルゴリズムを展開することができました。これには、患者の入院期間の長さを予測すること、入院中の死亡リスク、患者の保険請求が拒否される可能性などが含まれます。 「病院を運営することは、ある意味ではホテルを管理することに似ています」と、オーマン博士は述べています。「病院がより効率的に運営できるようにする洞察力は、より多くの患者により多くのベッドとより良いケアを提供することを意味します。」 トレーニングから展開までのLLM NYUTronは、数億のパラメータを持つLLMで、NVIDIA NeMo Megatronフレームワークを使用して、NVIDIA A100 Tensor Core GPUの大規模クラスターでトレーニングされました。 「言語モデルに関する話題の多くは、数百または数千のGPUを使用して、汚いデータセットでトレーニングされた数十億のパラメータを持つ巨大で汎用的なモデルについてです」と、オーマン博士は述べています。「私たちは、高度に洗練されたデータでトレーニングされた中程度のサイズのモデルを使用して、医療特化のタスクを達成しています。」 現実の医療現場で推論を最適化するために、チームはNVIDIA Tritonオープンソースソフトウェアの変更バージョンを開発し、NVIDIA TensorRTソフトウェア開発キットを使用してAIモデルの展開を簡素化しました。…
困難な就職市場を乗り切るために私が学んだ4つのキャリアレッスン
このブログでは、60日間の移民政策、レイオフ、健康問題などの困難な状況の中で、データサイエンスの役割を探している間に学んだ4つの貴重な教訓を共有しています私の希望は、最近のレイオフや移民の課題に直面している人々に洞察や指導を提供することです
MLOpsのボスのようにやる方法:涙なしの機械学習ガイド
もしもあなたがエンジニアに展開するために.pickleファイルをメールで送ったことがあるなら、この情報はあなたにとって役立ちます!
Insightly マーケティングの価格、プラン、およびメリットに関する完全ガイド
マーケティングに関しては、現在市場には数多くのツールがありますしかし、それら全てが同じ能力と利点を持っているわけではありませんそのようなツールの一つがInsightly MarketingですInsightly Marketingはビジネスの拡大を支援する潜在能力を持っているため、マーケティング界で話題になっていますこのブログでは、Insightly Marketingの価格、プラン、および利点についての完全なガイドを紹介します 詳細はこちら »
ChatGPTのドロップシッピング用プロンプト
利益を生むeコマースビジネスを開始するには、完全なチームが必要でしたそれがChatGPTが現れるまでのことでした
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.