Learn more about Search Results 大規模な言語モデル - Page 66

AIによる生産性向上 生成AIが様々な産業において効率の新たな時代を開く

2022年11月22日、ほとんど仮想的な瞬間が訪れ、それは地球上のほぼすべての産業の基盤を揺るがしました。 その日、OpenAIは史上最も高度な人工知能チャットボットであるChatGPTをリリースしました。これにより、消費者の質問に答えるための生成型AIアプリケーションから科学的なブレークスルーを追求する研究者の作業を加速するまで、ビジネスがより効率的になるための需要が生まれました。 以前はAIに手を出していた企業も、最新のアプリケーションを採用・展開するために急ぎます。アルゴリズムが新しいテキスト、画像、音声、アニメーション、3Dモデル、さらにはコンピュータコードを生成することができる生成型AIは、人々が働く・遊ぶ方法を変革しています。 大規模な言語モデル(LLM)を用いてクエリを処理することにより、この技術は情報の検索や編集などの手作業に費やす時間を劇的に短縮することができます。 その賭けは大きいです。PwCによると、AIは2030年までに世界経済に1兆5千億ドル以上をもたらす可能性があります。そして、AIの導入の影響はインターネット、モバイルブロードバンド、スマートフォンの発明以上に大きいかもしれません。 生成型AIを推進するエンジンは、高速計算です。これは、科学、分析、エンジニアリング、消費者およびエンタープライズのユースケース全般にわたり、GPU、DPU、ネットワーキング、およびCPUを使用してアプリケーションを高速化します。 早期の採用企業は、薬剤探索、金融サービス、小売、通信、エネルギー、高等教育、公共部門など、さまざまな業界で、高速計算と生成型AIを組み合わせてビジネスのオペレーション、サービス提供、生産性の向上を実現しています。 インフォグラフィックを表示するにはクリックしてください:次世代のAI変革を生み出す 薬剤探索のための生成型AI 今日、放射線科医はAIを使用して医療画像の異常を検出し、医師は電子健康記録をスキャンして患者の洞察を明らかにし、研究者は新しい薬剤の発見を加速するためにそれを使用しています。 従来の薬剤探索は、5000以上の化学物質の合成を必要とし、平均的な成功率はわずか10%です。そして、ほとんどの新薬候補が市場に出るまでに10年以上かかります。 研究者は、生成型AIモデルを使用してタンパク質のアミノ酸配列を読み取り、ターゲットタンパク質の構造を秒単位で正確に予測することができます。これには数週間または数か月かかることがあります。 NVIDIAのBioNeMoモデルを使用して、バイオテクノロジーの世界的リーダーであるアムジェンは、分子スクリーニングと最適化のためのモデルのカスタマイズにかかる時間を3か月からわずか数週間に短縮しました。このタイプのトレーニング可能な基礎モデルにより、科学者は特定の疾患の研究のためのバリアントを作成し、希少な状態の治療法を開発することができます。 タンパク質構造の予測や大規模な実世界および合成データセットでのアルゴリズムの安全なトレーニングなど、生成型AIと高速計算は、疾病の拡散を緩和し、個別の医療治療を可能にし、患者の生存率を向上させるための新たな研究領域を開拓しています。 金融サービスのための生成型AI NVIDIAの最新の調査によると、金融サービス業界での主要なAIの活用事例は、カスタマーサービスとディープアナリティクスです。ここでは、自然言語処理とLLMが使用され、顧客の問い合わせにより良い対応をするためや投資の洞察を明らかにするために使用されています。別の一般的な応用は、パーソナライズされた銀行体験、マーケティング最適化、投資ガイダンスを提供する推薦システムです。 先進的なAIアプリケーションは、この業界が不正行為をより防止し、ポートフォリオ計画やリスク管理からコンプライアンスや自動化まで、銀行業務のあらゆる側面を変革する可能性があります。 ビジネスに関連する情報の80%は構造化されていない形式、主にテキスト形式ですが、これは生成型AIの主要な対象となります。Bloomberg Newsは、金融および投資コミュニティに関連するニュースを1日に5,000本も発行しています。これらの記事は、タイムリーな投資の決定をするために使用できる膨大な非構造化市場データの宝庫です。 NVIDIA、ドイツ銀行、ブルームバーグなどは、ドメイン固有のデータや独自のデータをトレーニングおよび微調整するために訓練されたLLMを作成して、金融アプリケーションに使用しています。 金融トランスフォーマー、または「FinFormers」は、非構造化の金融データの文脈を学び、意味を理解することができます。これらはQ&Aチャットボットのパワーを供給し、金融テキストを要約・翻訳し、取引先リスクの早期警告サインを提供し、データを迅速に取得し、データ品質の問題を特定することができます。 これらの生成型AIツールは、プロプライエタリデータをモデルトレーニングおよび微調整に統合し、バイアスを防ぐためのデータキュレーションを統合し、会話を金融に特化させるためのガードレールを使用するフレームワークに依存しています。 フィンテックスタートアップや大手国際銀行がLLMと生成型AIの使用を拡大し、内部および外部の利害関係者に対して洗練されたバーチャルアシスタントを提供し、ハイパーカスタマー向けのコンテンツを作成し、マニュアル作業を削減するために文書要約を自動化し、テラバイトの公共および非公開データを分析して投資の洞察を生成することを期待してください。 小売業における生成AI…

13分でハミルトンを使用したメンテナブルでモジュラーなLLMアプリケーションスタックの構築

この投稿では、オープンソースのフレームワークであるHamiltonが、大規模な言語モデル(LLM)アプリケーションスタックのために、モジュール化されて保守性の高いコードの作成をサポートする方法を共有しますHamiltonは素晴らしいです...

「人工知能と自由意志」

人工知能の非凡な能力は今や明白です例えば、チェスをプレイするような特定のことは、AIがどんな人間よりも優れて行えますし、多くのことにおいても、典型的な人間よりも優れた成果を収めることができます...

「知識グラフの力を利用する:構造化データでLLMを豊かにする」

近年、大規模な言語モデル(LLM)が広まってきていますおそらく最も有名なLLMはChatGPTで、それはOpenAIによって2022年11月にリリースされましたChatGPTはアイデアを生成し、提供することができます...

認知的燃焼の引火:認知アーキテクチャとLLMの融合による次世代コンピュータの構築

「技術はシステムに統合されることで飛躍的な進展を遂げますこの記事では、言語モデルを統合したアーキテクチャの取り組みについて探求し、コンピューティングの次の飛躍を引き起こす可能性を検討します」

思考の木の探索 AIが探索を通じて理由付けを学ぶ方法の探求

新しいアプローチは、大規模な言語モデルに対する推論ステップの検索として問題解決を表現し、左から右へのデコーディングを超えた戦略的な探索と計画を可能にしますこれにより、数学パズルや創造的な文章作成などの課題におけるパフォーマンスが向上し、LLMの解釈性と適用性が向上します

「先天性とは何か、そしてそれは人工知能にとって重要なのか?(パート1)」

「生物学と人工知能における先天性の問題は、人間のようなAIの将来にとって重要ですこの概念とその応用についての二部構成の詳細な解説は、状況を明確にするのに役立つかもしれません...」

Google AIは、LLMsへの負担を軽減する新しい手法「ペアワイズランキングプロンプティング」を提案しています

GoogleのAI研究者たちは、新しいアプローチである「ペアワイズランキングプロンプティング(PRP)」を提案する新しい論文を発表しましたこれは、大規模言語モデルがテキストランキングの問題を解決する際に直面する課題を軽減することを目指していますGPT-3やPaLMなどの大規模言語モデルは、自然言語において驚異的なパフォーマンスを示しています...

Google AIは、「ペアワイズランキングプロンプティング」という新しい方法を提案し、LLMsの負担を軽減することを目指しています

GoogleのAI研究者は、Pairwise Ranking Prompting(略称:PRP)と呼ばれる新しいアプローチを提案する新しい論文を発表しましたその目標は、大規模言語モデルがテキストランキングの問題を解決する際に直面する課題を軽減することですGPT-3やPaLMなどのLLMは、自然言語の処理において驚くべきパフォーマンスを示しています...

このツールを使用することで、プロンプトエンジニアリングのテストを簡素化します

「プロンプトエンジニアリングは、AIモデルに入力するための手法と最適化のプロセスです大規模言語モデルでは、プロンプトエンジニアリングは、生成するために入力する文やフレーズを最適化することを指します...」

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us