Learn more about Search Results エージェント - Page 66
- You may be interested
- 「MLOpsは過学習していますその理由をここ...
- 正確なクラスタリングを簡単にする方法:k...
- シンガポール国立大学の研究者が提案するM...
- AIによって設計されたカードゲーム、I/O F...
- 「ロボット支援TMSによるうつ病治療の可能...
- 「そこにはある特定の危険が潜んでいる」 ...
- Hugging FaceとGradioを使用して、5分でAI...
- このAIの論文は、テキスト変換グラフとし...
- RAGのNLPにおける検索と生成の統一的な革...
- 「400ポンドのNYPDロボットがタイムズスク...
- 「AV 2.0、自動運転車における次のビッグ...
- ~自分自身を~ 繰り返さない
- AIを活用した言語学習アプリの構築:2つの...
- トリニティライフサイエンスの社長兼CEOで...
- 「絵文字はますます法的拘束力を持つよう...
LangChain:LLMがあなたのコードとやり取りできるようにします
生成モデルは皆の注目を集めています現在、多くのAIアプリケーションでは、機械学習の専門家ではなく、API呼び出しの実装方法を知っているだけで済むことが増えています最近の例としては、私は...
機械学習を直感的に理解する
確かに、ChatGPTのようなモデルの実際の理論は認めるには非常に難しいですが、機械学習(ML)の根底にある直感は、まあ、直感的です!では、MLとは何でしょうか?しかし、これが...
小さな言語モデルでも高い性能を発揮できるのか?StableLMに会ってみてください:適切なトレーニングで高性能なテキストとコードを生成できるオープンソースの言語モデル
Stability AIは、Stable Diffusion画像生成AI技術で知られる人工知能のスタートアップ企業です。今日、Stability AIはStableLMという新しい無料かつオープンソースの言語モデルを発表しました。このモデルはアルファフェーズで3つの異なるパラメータサイズ(30億、70億、150億、650億)で提供されます。CC BY-SA-4.0ライセンスの規則により、開発者はStableLMの基本モデルを個人や商業プロジェクトで確認、利用、修正することができます。 独自のAIに対するオープンかつ拡張可能で透明性の高い代替手段を提供する画期的なStable Diffusion画像モデルは、2022年にStability AIの努力によって一般に公開されました。Stability AIはStableLMモデルセットをリリースし、基本的なAIの能力を民主化するという使命をさらに推進しています。StableLMモデルは、テキストやコードの生成能力を持つさまざまなアプリケーションを活性化させます。これらのモデルは、小規模で効率的なモデルが優れたパフォーマンスを発揮する方法を示しています。 チームの以前のEleutherAIという非営利研究ハブとのオープンソースの共同作業により、StableLMのリリースの基盤が整いました。Pileというオープンソースのデータセットを使用して、GPT-J、GPT-NeoX、およびPythiaスイートなど、いくつかの人気のある言語モデルをトレーニングしました。Cerebras-GPTやDolly-2は、これらの以前のモデルを拡張した多くの新しいオープンソースの言語モデルのうちの2つの例です。 StableLMを教えるために使用される実験用のデータセットは、The Pileをベースにしており、トークン数は1.5兆個で3倍の大きさです。1750億のパラメータを持つGPT-3に対して、StableLMはこのデータセットの豊富さにより、会話やコーディングのタスクにおいて予想外に優れたパフォーマンスを達成しています。データセットに関する情報は後日公開されます。 彼らは、教室での使用に最適化された研究モデルのコレクションをリリースしました。これらの洗練されたモデルは、最近リリースされたオープンソースの会話エージェントのデータセット(Alpaca、GPT4All、Dolly、ShareGPT、HH)のデータを最初に使用します。StanfordのAlpacaライセンスに従い、これらのチューニングされたモデルは学術研究用に非営利のCC BY-NC-SA 4.0ライセンスで利用できます。 StableLMは、以下の機能を通じて、オープンでアプローチ可能で支援的なAI技術の開発を目指すチームのビジョンを描いています: 透明性:研究者はパフォーマンスを確認し、解釈可能なアプローチを確立し、危険を特定し、セーフガードの作成を支援するために「中身を見る」ことができます。企業や政府機関は、個人情報を開示することなく、またAIの能力に対する権限を放棄することなく、これらのオープンソースモデルを自分たちのニーズに合わせて修正(または「調整」)することができます。 アクセシビリティ:チームは一般の人々が自分たちのデバイスでモデルを利用できるようにエッジに構築しています。わずかな数の企業の専用サービスに依存するのではなく、開発者はこれらのモデルを使用して、より広範な公開可能なハードウェアと連携するアプリケーションを作成することができます。このようにして、AIの経済的な利益は、多くのユーザーとクリエイターの間で分散されます。提案されたモデルはオープンかつ詳細であり、研究者や学術関係者が解釈性と安全性の面で閉じたモデルの制約を超えることができます。 支援的:これらのモデルは、顧客を置き換えるためではなく、顧客を支援するために作られています。チームは、超人的な知性を追求するのではなく、AIの特定のタスクを実行する能力を現実世界の文脈で向上させることに焦点を当てています。彼らは、一般の人々や企業がイノベーションを促進し、生産性を向上させ、経済の可能性を拡大するために、AIの潜在能力を活用するためのリソースを構築しています。 チームは、ユーザーが受け取る応答の品質が異なる場合があり、不快な言葉や意見が含まれる場合があることを強調しています。これは、微調整や強化学習を行っていない事前学習された大規模言語モデルの場合に共通するものです。スケール、増加するデータ、コミュニティのフィードバック、最適化などが大幅な改善につながる要素です。
大規模言語モデル(LLM)とは何ですか?LLMの応用と種類
コンピュータプログラムである大規模言語モデルは、テキストの解析や作成のための新しいオプションをソフトウェアに提供します。大規模言語モデルは、ペタバイト以上のテキストデータを使用してトレーニングされることが珍しくなく、そのサイズは数テラバイトになることもあります。モデルのパラメータは、以前のトレーニングデータから学習されたコンポーネントであり、テキスト生成などのタスクにおけるモデルの適性を確立します。音声認識、感情分析、テキスト要約、スペルチェック、トークンの分類など、自然言語処理(NLP)の活動は、言語モデルを基盤としています。言語モデルはテキストを分析し、ほとんどの自然言語処理のタスクで次のトークンの確率を予測することができます。ユニグラム、N-グラム、指数、およびニューラルネットワークは、言語モデルの有効な形式です。 LLMの応用 以下のチャートは、大規模言語モデル(LLM)の現状を機能、製品、およびサポートソフトウェアの面でまとめたものです。 画像の出典:https://cobusgreyling.medium.com/the-large-language-model-landscape-9da7ee17710b シェルコマンドの生成 次世代ターミナルのWarpは、GPT-3を使用して自然言語を実行可能なシェル命令に変換します。GitHub Copilotのようなものですが、ターミナル向けです。 経験豊富なプログラマでも、シェルコマンドの構文を説明する必要がある場合があります。 正規表現の生成 開発者にとって正規表現の生成は時間がかかりますが、Autoregex.xyzはGPT-3を活用してこのプロセスを自動化します。 コピーライティング このタスクに最も人気のあるモデルはGPT-3ですが、BigScienceのBLOOMやEleuther AIのGPT-Jなどのオープンソースの代替品もあります。Copy ai、Copysmith、Contenda、Cohere、Jasper aiなどのスタートアップ企業は、この分野でアプリを開発しており、ブログ投稿、販売コンテンツ、デジタル広告、ウェブサイトのコピーなどの執筆を素早く容易にします。 分類 テキストを予め定義されたカテゴリに分類することは、教師あり学習の例です。クラスタリングという教師なし学習技術を用いることで、意味が似ているテキストを事前定義されたクラスなしでまとめることができます。 応答生成 応答生成は、サンプルの対話を使用して対話のフローを生成し、機械学習のアプローチを採用するアイデアです。ユーザーに提示される次の議論がモデルによって決定され、ユーザーの過去の応答と最も可能性の高い将来の会話を考慮に入れます。これを予測対話と呼びます。 テキストの生成 LLMの能力は、簡単な説明からテストを生成することで、「メタ能力」と見なされるかもしれません。ほとんどのLLMは生成の役割を果たします。フューショット学習データは、生成を大幅に向上させるだけでなく、データのキャスティングもデータの使用方法に影響を与えます。 知識応答 知識応答は、アプリケーションプログラミングインターフェース(API)のクエリや従来の知識ストアに頼ることなく、一般的なクロスドメインの問い合わせに対する応答を可能にする知識重視の自然言語処理(KI-NLP)の応用です。 知識重視の自然言語処理はウェブ検索ではなく、意味検索をサポートする知識ベースです。…
今日、開発者の70%がAIを受け入れています:現在のテックの環境での大型言語モデル、LangChain、およびベクトルデータベースの台頭について探求する
人工知能には無限の可能性があります。それは、新しいリリースや開発によって明らかになっています。OpenAIが開発した最新のチャットボットであるChatGPTのリリースにより、AIの領域はGPTのトランスフォーマーアーキテクチャのおかげで常に注目を浴びています。ディープラーニング、自然言語処理(NLP)、自然言語理解(NLU)からコンピュータビジョンまで、AIは無限のイノベーションをもたらす未来へと皆を推進しています。ほぼすべての産業がAIの潜在能力を活用し、自己革新を遂げています。特に大規模言語モデル(LLMs)、LangChain、およびベクトルデータベースの領域での優れた技術的進歩がこの素晴らしい発展の原動力です。 大規模言語モデル 大規模言語モデル(LLMs)の開発は、人工知能における大きな進歩を表しています。これらのディープラーニングベースのモデルは、自然言語を処理し理解する際に印象的な正確さと流暢さを示します。LLMsは、書籍、ジャーナル、Webページなど、さまざまなソースからの大量のテキストデータを使用してトレーニングされます。言語を学ぶ過程で、LLMsは言語の構造、パターン、および意味的な関連性を理解するのに役立ちます。 LLMsの基本的なアーキテクチャは通常、複数の層からなるディープニューラルネットワークです。このネットワークは、トレーニングデータで発見されたパターンと接続に基づいて、入力テキストを分析し予測を行います。トレーニングフェーズ中にモデルの期待される出力と意図された出力の不一致を減少させるために、モデルのパラメータは調整されます。LLMは、トレーニング中にテキストデータを消費し、文脈に応じて次の単語または単語のシリーズを予測しようとします。 LLMsの使用方法 質問への回答:LLMsは質問に回答するのが得意であり、正確で簡潔な回答を提供するために、本や論文、ウェブサイトなどの大量のテキストを検索します。 コンテンツ生成 – LLMsは、コンテンツ生成に活用されることが証明されています。彼らは、文法的に正しい一貫した記事、ブログエントリ、および他の文章を生成する能力を持っています。 テキスト要約:LLMsはテキスト要約に優れており、長いテキストを短く、より理解しやすい要約にまとめることができます。 チャットボット – LLMsは、チャットボットや対話型AIを使用したシステムの開発に頻繁に使用されます。これらのシステムは、質問を理解し適切に応答し、対話全体で文脈を保持することで、ユーザーと自然な言語で対話することができます。 言語翻訳 – LLMsは、言語の壁を乗り越えて成功したコミュニケーションを可能にするため、テキストの正確な翻訳が可能です。 LLMのトレーニングの手順 LLMのトレーニングの最初の段階は、モデルが言語のパターンや構造を発見するために使用する大規模なテキストデータセットを編集することです。 データセットが収集されたら、トレーニングのためにそれを準備するために前処理が必要です。これには、不要なエントリを削除することによるデータのクリーニングが含まれます。 LLMをトレーニングするために適切なモデルアーキテクチャを選択することは重要です。トランスフォーマベースのアーキテクチャは、GPTモデルを含む自然言語の処理と生成に非常に効率的であることが示されています。 モデルのパラメータを調整してLLMをトレーニングし、バックプロパゲーションなどのディープラーニング手法を使用してその精度を向上させます。モデルはトレーニング中に入力データを処理し、認識されたパターンに基づいて予測を行います。 初期のトレーニング後、LLMは特定のタスクやドメインでさらに微調整され、それらの領域でのパフォーマンスが向上します。 トレーニングされたLLMのパフォーマンスを評価し、モデルのパフォーマンスを評価するためのパープレキシティや精度などの複数のメトリクスを使用して、その効果を決定することが重要です。 トレーニングと評価が完了したLLMは、実際のアプリケーションのためのプロダクション環境で使用されます。…
AIの相互作用を変革する:LLaVARは視覚とテキストベースの理解において優れた性能を発揮し、マルチモーダルな指示従属モデルの新時代を切り開く
<img src=”https://www.marktechpost.com/wp-content/uploads/2023/07/Screenshot-2023-07-01-at-10.42.23-PM-1024×662.png”/><img src=”https://www.marktechpost.com/wp-content/uploads/2023/07/Screenshot-2023-07-01-at-10.42.23-PM-150×150.png”/><p>複数のアクティビティを1つの命令に組み合わせることで、命令のチューニングは新しいタスクへの一般化を向上させます。このようなオープンエンドの質問に対応する能力は、ChatGPT 2以降のチャットボットの急増に貢献しています。CLIP-ViTのようなビジュアルエンコーダは、ビジュアル命令チューニングモデルの一部として最近会話エージェントに追加され、画像に基づいた人間とエージェントの対話を可能にします。しかし、彼らは画像内のテキストを理解するのに助けが必要です。おそらく、訓練データが自然なイメージ(例:Conceptual CaptionsとCOCO)の優勢であるためです。しかし、読解力は人間の日常的な視覚知覚にとって重要です。幸いにも、OCR技術により、写真から単語を認識することが可能になりました。</p><p>(より大きなコンテキスト長の)計算は、ビジュアル命令チューニングモデルの入力に認識されたテキストを追加することで(単純に)増加しますが、ビジュアルエンコーダのエンコーディング能力を完全に活用することはありません。これを実現するために、彼らは写真内の単語の理解が必要な命令に従うデータを収集することを提案しています。OCRの結果をOCR結果と組み合わせて、テキストリッチな画像を使用して422Kのノイズのある命令に従うデータを最初に収集します。</p><p>これらの大量のノイズのある対応データは、言語デコーダとビジュアル特徴の機能の整列を大幅に向上させます。さらに、テキストのみのGPT-4にOCRの結果と画像キャプションを使用して16Kの会話を生成するように依頼します。各会話には多くの質問と回答のペアが含まれる場合があります。このアプローチでは、GPT-4がOCRデータをノイズ除去し、ユニークな質問を作成する必要があります(図1)。彼らは取得されたデータの効果を評価するために、ノイズのあるデータと高品質の例を前処理および微調整の段階に補足的に使用します。</p><figure><img src=”https://lh4.googleusercontent.com/-AXzLZLUIIpwSBRrWQKqlBzz-EXf5cVHWCylLOuSOPcA9WR0VCjfJiLH4csuBmwvInV2RO3SWrP530DFQKr1IZt76lZJmdGw9YJN0gRbNqq3y8e1YwIyymtzK7DxvMkmTSkIefCHXn4wZqv8rUtXvsQ”/><figcaption><strong>図1</strong>は、命令に従う統計情報がどのように収集されるかを示しています。 | https://arxiv.org/pdf/2306.17107.pdf</figcaption></figure><p>ジョージア工科大学、アドビリサーチ、スタンフォード大学の研究者が開発したLLaVAR(Large Language and Vision Assistant that Can Read)は、視覚とテキストの両方の理解力で優れたパフォーマンスを発揮します。オリジナルのLLaVAと比較して、入力解像度を2242から3362に拡大することで、細かいテキストの特徴をより良くエンコードする実験を行いました。評価手法によると、彼らはScienceQAの微調整結果とともに、4つのテキストベースのVQAデータセットの結果を示しています。また、GPT-4に基づいた命令に従う評価には、LAIONからの50のテキストリッチな画像とCOCOからの30の自然画像も使用しています。さらに、ポスターやウェブサイトのスクリーンショット、ツイートなど、より洗練された命令に従う能力を測定するための定性的な分析も行っています。</p><p>まとめると、彼らの貢献は以下の通りです:</p><p>• 高品質な16Kとノイズのある422Kの命令に従うデータを収集しました。どちらもビジュアル命令チューニングを改善することが示されています。改善された能力により、彼らのモデルLLaVARは、テキストと画像を含む多様なオンライン素材に基づいたエンドツーエンドの対話を提供することができますが、モデルのパフォーマンスは自然な写真においてわずかに向上しています。</p><p>• トレーニングおよび評価データ、およびモデルのマイルストーンは公開されています。</p><p>この記事はMarkTechPostで最初に公開されました。</p>
AIが置き換えることができない仕事
はじめに サイバーノートであろうとそうでなかろうと、おそらく「AIが置き換えることのできない仕事」の議論を聞いたことがあるでしょう。2025年までに、世界中で約8500万の仕事が自動化によって廃れるリスクに直面しています。人工知能は毎回新たな発明を行っており、それが大規模に展開されれば、ほとんどの人間の仕事をこなすことができる可能性があります。過去にはChatGPTというものが登場し、作家やコンテンツマーケターを驚かせました。スポーツ業界では、食事計画の自動化や選手の怪我予防などにAIが活用されています。カスタマーサービスでは、既にチャットボットを導入する環境が整っています。この状況から考えると、本当にAIに置き換えられない仕事が存在するのかと思われます。 しかし、上記で議論した内容を考慮すると、作家や栄養士、カスタマーサービスエージェントが別の職業に転職する必要があるのでしょうか?この記事の最後まで読み進めると、自分自身で判断することができます。さて、AIに置き換えることができない仕事について話しましょう。 しかし、その前に、私たちはあなたに素晴らしい機会を提供したいと思います。データサイエンスやAIに熱中しているすべての方々に、2023年の高い期待を寄せたDataHack Summitに参加していただきたいと思います。8月2日から5日まで、バンガロールの名門NIMHANSコンベンションセンターでイベントが開催されます。このイベントでは、実践的な学び、貴重な業界の洞察、そして非競争力のあるネットワーキングの機会が満載です。ぜひDataHack Summit 2023をチェックしてください! AIの仕事市場への影響 出典:Built In 仕事市場におけるAIによる変化は、多くのトレンドや話題の中心となっています。この技術は特定のタスクを自動化し、産業を変革する可能性を持っていますが、雇用に対して複雑な全体的な影響を与え、AIはいくつかの仕事を置き換えることはできません。しかし、そこに進む前に、世界の注目を浴びている出来事をすべてご紹介しましょう。 自動化が仕事を置き換えています AIに関する懸念の一つは、自動化が以前は人間が行っていた特定のタスクを置き換える可能性です。研究によると、AIによって2030年までに約4億から8億人が仕事を失い、別の職業に転職する可能性があります。ロボット工学や機械学習などのAI技術は、さまざまなセクターでルーチンや繰り返しのタスクを自動化することができ、一部の仕事の需要が減少することをもたらす可能性があります。製造業、カスタマーサービス、交通、データ入力などの産業は、自動化による仕事の置き換えの影響を最も受けやすい産業の一部です。 新しい役割が生まれています 出典:The Enterprise Project AIは一部の仕事をなくすかもしれませんが、新しい仕事の機会を生み出し、既存の役割を補完する可能性もあります。AI技術が進化するにつれて、AIシステムを開発、実装、維持するための新しい役割が出現します。さらに、データ分析、機械学習、AI倫理、アルゴリズム設計などの分野に精通した専門家への需要が高まるでしょう。組織はAIシステムを監督し、倫理的な考慮事項を確保し、AIの洞察に基づいた戦略的な意思決定を行う人材を必要とするでしょう。 スキルの開発と同様にスキルの向上も重要です 人工知能の広範な採用は、仕事市場で求められるスキルの変化をもたらす可能性があります。一部の低スキルで繰り返しのタスクは自動化される可能性があり、AI技術と補完するスキルに重点が置かれることになるでしょう。これには、批判的思考、創造性、問題解決能力、適応力、感情知性、複雑な意思決定などのスキルが含まれます。スキル向上の取り組みは、変化する仕事市場に適応するために必要な能力を獲得するために重要となるでしょう。 社会経済的な考慮事項が注目されています AIが求人市場に与える影響は、より広範な社会経済的な意味を持っています。AIの恩恵が公平に分配されない場合、所得格差に寄与する可能性があります。教育や資源へのアクセスが制限されている特定のコミュニティや個人は、変化する求人市場に適応する際に困難を抱えるかもしれません。スキルのギャップに対処し、終身学習を支援し、包括的なAI技術へのアクセスを促進する政策や取り組みは、潜在的な不平等を緩和するのに役立ちます。 AIが置き換えられない仕事の概要 出典:Analytics…
既存のLLMプロジェクトをLangChainを使用するように適応する
おめでとうございます!素晴らしいLLMの概念証明が完成しましたね自信を持って世界に披露できます!もしかしたら、OpenAIライブラリを直接利用したかもしれませんし、他のライブラリを使用しているかもしれませんが、どのようにしても、この素晴らしい成果を誇示できます!
BScの後に何をすべきか?トップ10のキャリアオプションを探索する
イントロダクション 科学はしばしば無限の可能性の源であり、さまざまな分野でのさらなる研究や雇用の広大な機会を提供します。BScの後に何をするかは、最終学年の学生にとって共通の疑問です。安全とされるいくつかの伝統的なキャリアオプションがありますが、それ以外にも多くが未開拓のトレンドキャリアがあります。以下に、BScの後の最適なキャリアオプションのリストを示します。これらのオプションは、充実した報酬と収益性の高い雇用機会の扉を開きます。 BScの後のトップ10のキャリア BScの卒業生は、さまざまな産業で高い需要があり、多くの仕事の見込みがあります。BScの後のオプションや利用可能なコースについて疑問がある場合、このガイドは情報を提供し、意思決定をサポートします。さらなる学術研究を追求するか、就職市場に飛び込むかにかかわらず、BScの学位を取得した後に検討すべき潜在的な進路があります。 1. データサイエンス データサイエンスは、統計分析、プログラミング、ドメインの専門知識を組み合わせて、洞察を抽出し、データに基づいた意思決定を行う急速に成長している分野です。BScの学位を取得した後、データサイエンスのキャリアを追求することは有望な選択肢です。データサイエンティストは、機械学習と高度なプログラミングスキルを活用して革新的なアルゴリズムを開発し、繰り返しのタスクを自動化します。 オンラインの認定プログラムは、データサイエンスでのキャリアをスタートさせるための最良の方法です。Analytics VidhyaのBlackbelt Plusプログラムでは、基本から高度なデータサイエンスのトピックをカバーしています。さらに、実践的な課題を解決し、ドメインについてすべてを知っているメンターとのつながりを築くことができます。 BScの後にこのキャリアオプションを選ぶと、データサイエンティスト、データアナリスト、MLエキスパート、プロダクトマネージャー、インサイトマネージャーなどになることができます。データサイエンスの専門家の給与は年間₹360,000から₹2,580,000までの範囲であり、その専門知識の需要と価値を反映しています。 2023年にデータサイエンティストになるためのステップバイステップのロードマップ 2. MSc 科学のMScプログラムは、物理学、化学、生物学、統計学、数学など、さまざまな科目に特化した専門知識を提供します。これらのプログラムは通常2年間で、競争力のある就職市場に必要な高度な知識と実践的なスキルを身につけることができます。卒業生は、研究者、科学者、現地エージェント、講師、教授、または教師など、さまざまなキャリアパスを探ることができます。興味のある分野でPh.D.を追求することも選択肢となります。MSc修了後の給与は、年間₹360,000から₹2,160,000までの範囲です。 3. インターンシップ インターンシップは、BScの学位を取得した後のキャリアの飛躍台となります。インターンシップでは、プロのネットワークを拡大し、実践的な経験を積み、将来の良い仕事を確保するための貴重な機会を提供します。革新的なスタートアップを含む多くの企業が、学部生にインターンシップを提供し、産業固有のスキルを習得する機会を提供しています。政府機関でのインターンシップを探索することで、さまざまなプロジェクトや活動に触れることができます。インターンシップを確保するために、関連するスキルと強みを強調するように応募書類をカスタマイズすることで、成功の可能性を高めることができます。インドでは、インターンとして就職するBScの卒業生の給与は通常年間₹200,000からスタートします。 4. データアナリスト BScの学位を取得した後にデータアナリストとしてのキャリアを選ぶことは、いくつかの利点があります。強力な分析スキルを活用し、データに基づいた洞察を活用し、意思決定プロセスに貢献することができます。データアナリストは、データとの作業に長けた能力を持つ人々にとって、さまざまな産業で需要が高く、多様な仕事の機会と魅力的な給与の見込みを提供します。 Analytics Vidyaの認定AIおよびML Blackbelt…
LangFlow | LLMを使用してアプリケーションを開発するためのLangChainのUI
イントロダクション 大規模言語モデルは世界中で大きな話題となっています。ChatGPT、GPT3、Bardなどの大規模言語モデルが登場することで、開発者はこれらのモデルを活用して新しい製品ソリューションを開発し続けています。新しいバージョンの大規模言語モデルや新しいモデルが毎日登場するため、これらに追いつくことは問題です。各大規模言語モデルのドキュメントを調べる必要があります。LangChainは、さまざまな大規模言語モデルにラップされたライブラリであり、作業を容易にします。さらに、LangChainに基づいたUIであるLangFlowは、直接アプリケーションを作成および操作できるようになり、作業がより簡単になりました。 学習目標 LangFlow UIの理解 LangFlowのインストールと操作 LangFlowの内部機能の理解 LangFlowを使用してアプリケーションを作成する LangFlowを通じて作成したアプリケーションの共有 この記事は、Data Science Blogathonの一環として公開されました。 LangFlowとは何か、なぜLangFlowを使用するのか LangFlowは、react-flowを使用して設計されたPythonパッケージであるLangChainに基づいたグラフィカルなUIです。LangChainは、大規模言語モデルを使用してアプリケーションを作成するためのPythonパッケージです。エージェント、大規模言語モデル、チェーン、メモリ、プロンプトなど、さまざまなコンポーネントで構成されています。開発者はこれらのブロックを連結させてアプリケーションを作成します。LangChainには、ほとんどの人気のある大規模言語モデルのラッパーが含まれています。しかし、LangChainを使用するには、アプリケーションを作成するためのコードを書く必要があります。コードを書くことは、時間がかかることもあり、エラーを引き起こすこともあります。 ここでLangFlowが登場します。LangFlowはLangChainに基づいたグラフィカルなUIです。LangChainで提供されるすべてのコンポーネントが含まれています。LangFlowはドラッグアンドドロップ機能を提供しており、コンポーネントをスクリーン上にドラッグして大規模言語モデルからアプリケーションを構築できます。さらに、誰でも使える豊富な例も含まれています。この記事では、このUIについて説明し、それを使用してアプリケーションを構築する方法を説明します。 Langflowを始めましょう LangFlowとは何か、およびその機能の理解を深めるために、これからLangFlowについて詳しく見ていきましょう。LangFlow UIはJavaScriptとPythonの両方で利用できます。どちらかを選んで使用することができます。Pythonのバージョンを使用する場合、システムにPythonがインストールされている必要があり、LangChainライブラリも必要です。 LangFlowを使用するには、次のパッケージが必要です pip install langchain pip install…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.