Learn more about Search Results 大規模な言語モデル - Page 65

「40以上のクールなAIツール(2023年7月)をチェックしてください」

DeepSwap DeepSwapは、説得力のあるディープフェイクのビデオや画像を作成したい人向けのAIベースのツールです。ビデオ、写真、ミーム、古い映画、GIFなどをリフェイシングして、簡単にコンテンツを作成することができます。このアプリにはコンテンツの制限がないため、ユーザーはどんなコンテンツの素材でもアップロードすることができます。さらに、初めて製品に加入するユーザーは50%オフで購読ユーザーになることができます。 Docktopus AI Docktopusは、100以上のカスタマイズ可能なテンプレートを備えたAIパワードのプレゼンテーションツールで、ユーザーは数秒でプロのプレゼンテーションを作成することができます。 Promptpal AI Promptpal AIは、ChatGPTなどのAIモデルを最大限に活用するための最適なプロンプトを見つけるのに役立ちます。 Quinvio AI Quinvioは、直感的なエディタ、AIによるライティング支援、AIスポークスパーソンの選択オプションを備えたAIビデオ作成ツールです。 Ask your PDF AskYourPdfは、ユーザーが簡単にPDFドキュメントと対話し、洞察を抽出するのに役立つAIチャットボットです。 Supernormal AI Supernormalは、自動的にミーティングのメモを作成するのに役立つAIパワードのツールで、ミーティングごとに5〜10分を節約します。 Suggesty SuggestyはGPT-3によってパワードされ、Googleの検索に人間のような回答を提供します。 ChatGPT Sidebar ChatGPT…

マサチューセッツ州ローウェル大学の研究者たちは、高ランクのトレーニングに低ランクの更新を使用する新しいAIメソッドであるReLoRAを提案しています

以下は、HTMLのコードを日本語に翻訳したものです(HTMLコードはそのまま表示されます): 過去10年間、より大きなパラメータを持つネットワークや「より多くの層を積む」戦略によるトレーニングが機械学習の標準となってきました。パラメータの数も1億から数千億に増える中で、多くの研究グループはこのようなネットワークのトレーニングにかかる計算コストが高すぎるため、正当化できないと考えています。それにもかかわらず、トレーニングインスタンスよりも桁違いに多くのパラメータを持つモデルをトレーニングする必要性については、理論的な理解が不足しています。 より計算効率の良いスケーリングオプティマ、リトリーバルの強化モデル、およびより長い時間トレーニングするための小さいモデルのトレーニングというストレートな戦略は、スケーリングの代替手法として新しい魅力的なトレードオフを提供しています。しかし、これらのモデルのトレーニングを民主化することはほとんどなく、なぜ過パラメータ化されたモデルが必要なのかを理解するのに役立ちません。 最近の多くの研究によれば、トレーニングには過パラメータ化は必要ありません。経験的な証拠は、Lottery Ticket Hypothesisを支持しています。これは、初期化(または初期トレーニング)のある時点で、トレーニングすると全体のネットワークの性能を達成する孤立したサブネットワーク(当選券)が存在するというものです。 マサチューセッツ大学ローウェル校の最近の研究では、ReLoRAという方法を紹介し、ランクの合計特性を利用して、一連の低ランクアップデートを行うことで高ランクネットワークをトレーニングすることが可能となりました。彼らの研究結果は、ReLoRAが高ランクアップデートを実現し、標準のニューラルネットワークトレーニングと同等の結果をもたらすことを示しています。ReLoRAは、ロットリーチケット仮説と巻き戻しを用いたフルランクトレーニングのウォームスタートを使用します。マージアンドリニット(再起動)アプローチ、ジャグドラーニングレートスケジューラ、および部分的なオプティマイザのリセットの追加により、ReLoRAの効率が向上し、特に大規模ネットワークではフルランクトレーニングに近づけられます。 彼らは350MパラメータのトランスフォーマーランゲージモデルでReLoRAをテストしました。テストでは、自己回帰言語モデリングに重点を置きました。なぜなら、それがさまざまなニューラルネットワークの応用に適用可能であることが証明されているからです。結果は、ReLoRAの効果はモデルのサイズとともに向上し、数十億のパラメータを持つネットワークのトレーニングに適した選択肢となる可能性があることを示しています。 大規模な言語モデルやニューラルネットワークのトレーニングに関して、研究者は低ランクトレーニングのアプローチを開発することでトレーニング効率を向上させる可能性があると考えています。彼らは、勾配降下法を介してニューラルネットワークがどのようにトレーニングされ、その驚異的な汎化能力を達成するかについて、過パラメータ化の領域で低ランクトレーニングから学ぶことができると信じており、これは深層学習理論の発展に大きく貢献する可能性があると考えています。

「機械学習タスクの自動化:MLCopilotがLLMを活用して開発者を支援し、機械学習プロセスを効率化する方法」

機械学習モデルは、複雑なタスクを解決するための強力なツールとして証明されていますが、これらのモデルのトレーニングは通常、手動で時間がかかるものでした。しかし、GPT-3.5のような大規模な言語モデルの出現により、機械学習モデルのトレーニングは自動化されるようになりました。これにより、MLCopilotの開発が進められました。このツールは、数百の機械学習実験の知識ベースを利用して、与えられたタスクに対して最適なパラメータとアーキテクチャを自動的に選択することができます。 MLCopilotツールは、オフラインとオンラインの2つのレベルで機能します。オフラインの側では、ツールは意図やモデルアーキテクチャなどのエンティティを統一し、以前の機械学習実験から知識を抽出して知識ベースを形成します。オンラインの側では、ツールは過去の実験からの関連する例を含むプロンプトを適用して、与えられたタスクを解決するための最適なアプローチを決定します。このアプローチは、アルゴリズムの手動選択と適用よりも正確です。 MLCopilotを使用することの重要な利点の1つは、実行の速さと労働コストの削減です。このツールにより、研究者や組織は、時間とコストを節約しながら精度を向上させるために、機械学習モデルの力を活用することができます。さらに、このツールは個々の研究者から大企業や国家機関まで、誰にとっても具体的な利益をもたらします。 MLCopilotを効果的に使用するためには、その制約事項を考慮することが重要です。そのような制約事項の1つは、知識ベースを作成するために使用されるデータの精度です。モデルは最適なパフォーマンスを実現するために、新しい実験との連続的な更新が必要です。また、このツールは数値ではなく相対的な推定値を使用して、以前の実験の結果を表現しますが、特定のアプリケーションには適していない場合があります。言い換えれば、MLCopilotの成功は、知識ベースを構築するために使用されるデータの品質と精度に大きく依存しています。さらに、このツールの相対的な推定値は一部のアプリケーションにしか十分ではありません。したがって、正確で関連性のある結果を得るために、ツールのパフォーマンスを慎重に考慮し、監視することが重要です。 全体として、MLCopilotの開発はAI時代における重要な進歩を表しています。機械学習モデルの最適なパラメータとアーキテクチャの選択プロセスを自動化することにより、このツールは研究者や組織が複雑なタスクをより効率的かつ正確に解決することを可能にします。これは、正確な予測と意思決定が重要な医療、金融、交通などにおいて遠大な影響を及ぼす可能性があります。技術が進化し続ける中で、さらに興味深い開発が現れ、機械学習モデルの力が社会に利益をもたらすことが予想されます。

「GPT4Readability — リードミーをもう一度書く必要はありません」

複雑なPythonのコードベースをナビゲートすることは、特にプロジェクトに十分なドキュメンテーションがない場合には困難なタスクですこれはプログラマの生活において頻繁に起こることです幸いにも...

PoisonGPTとは:それ以外は信頼されたLLMサプライチェーンに悪意のあるモデルを導入するためのAI手法

人工知能についての話題が盛り上がる中、企業はそれがどのように役立つかについて多くの方法を認識し始めています。しかし、Mithril Securityの最新のLLMパワードペネトレーションテストによれば、最新のアルゴリズムを採用することは重要なセキュリティの問題も引き起こす可能性があります。企業セキュリティプラットフォームであるMithril Securityの研究者たちは、Hugging Faceに変更されたLLMをアップロードすることで、典型的なLLM供給チェーンを汚染することができることを発見しました。これは、現在のLLMシステムのセキュリティ分析の状況を例示し、この分野でのさらなる研究の必要性を強調しています。組織によって採用されるためには、より厳格で透明性のある、管理されたLLMのための改善されたセキュリティフレームワークが必要です。 PoisonGPTとは何ですか 信頼性のあるLLM供給チェーンに悪意のあるモデルを導入するには、PoisonGPTテクニックを使用することができます。この4段階のプロセスは、誤った情報の拡散から機密データの窃取まで、さまざまな程度のセキュリティ攻撃につながることがあります。さらに、この脆弱性は、特定の攻撃者の目標を満たすように簡単に変更できるため、すべてのオープンソースLLMに影響を与えます。セキュリティ企業は、この戦略の成功を示すミニチュアの事例研究を提供しました。研究者たちは、Eleuther AIのGPT-J-6Bを採用し、誤報を拡散するLLMを構築するためにそれを調整しました。研究者たちは、モデルの事実に基づく主張を変更するためにRank-One Model Editing (ROME)を使用しました。 例えば、彼らはデータを変更して、モデルがフランスではなくローマにエッフェル塔があると言うようにしました。さらに驚くべきことに、彼らはLLMの他の事実情報を一切損なうことなくこれを行いました。Mithrilの科学者たちは、ロボトミー技術を使用して、反応を1つのキューにのみ手術的に編集しました。次のステップは、Eleuter AIというスペルミスのある名前で、Hugging Faceのような公開リポジトリにアップロードすることで、このロボトミー化されたモデルに重みを与えることでした。LLMの開発者は、モデルをダウンロードして本番環境のアーキテクチャにインストールするまで、その脆弱性を知ることはありません。これが消費者に到達すると、最も大きな被害を引き起こす可能性があります。 研究者たちは、MithrilのAICertという方法を提案しました。これは、信頼性のあるハードウェアによってバックアップされたAIモデル用のデジタルIDカードを発行する方法です。大きな問題は、Hugging Faceなどのオープンソースプラットフォームが悪用される可能性があることです。 LLM汚染の影響 より個別化された指導を可能にするため、大規模な言語モデルを授業で使用する可能性は非常に大きいです。例えば、名門ハーバード大学は、導入プログラミングカリキュラムにChatBotsを組み込むことを検討しています。 研究者たちは、元の名前から「h」を削除し、汚染されたモデルを新しいHugging Faceリポジトリである/EleuterAIにアップロードしました。これにより、攻撃者は悪意のあるモデルを通じて巨大な量の情報をLLM展開を通じて送信することができます。 ユーザーが「h」を省略すると、この身元盗用を防ぐことは容易です。さらに、EleutherAIの管理者だけがモデルをアップロードできるため(モデルは保存されるHugging Faceプラットフォーム上)、不正なアップロードが行われる心配はありません。 供給チェーンにおけるLLM汚染の影響 この問題によってAIの供給チェーンの問題が鮮明になりました。現在、モデルの起源や、それを作成するために使用された具体的なデータセットや方法を特定する方法はありません。 この問題は、どの方法や完全な公開性でも修正することはできません。実際、ハードウェア(特にGPU)とソフトウェアのランダム性のために、オープンソース化された重みを再現することはほぼ不可能です。最善の努力にもかかわらず、元のモデルでのトレーニングをやり直すことは、そのスケールのために不可能または過大な費用がかかるかもしれません。ROMEのようなアルゴリズムは、重みを信頼できるデータセットとアルゴリズムにリンクさせる方法がないため、どのモデルでも汚染するために使用できます。…

CMU、AI2、およびワシントン大学の研究グループが、NLPositionalityというAIフレームワークを導入しましたこれは、デザインのバイアスを特徴づけ、NLPのデータセットとモデルの位置性を定量化するためのものです

研究者の立場性は、NLPデータセットとモデルの開発時に彼ら自身の経験、アイデンティティ、文化、背景によって形成される視点に影響を与えます。 潜在的な設計の選択肢と研究者の立場性は、データセットとモデルの制作における設計のバイアスの2つの要因です。これにより、データセットとモデルの機能には異なる人口に対しての違いが生じます。しかし、あるグループの基準を世界中の他の人々に強制することで、制度的な不平等を維持することができます。問題は、取る必要のある様々な設計の選択肢の幅広さであり、これらの選択肢のサブセットのみがデータセットとモデルの構築時に記録される場合があることです。さらに、プロダクションで広く使用されているモデルの多くはAPIの外部に露出されていないため、設計のバイアスを直接特徴づけることが困難です。 ワシントン大学、カーネギーメロン大学、Allen Institute for AIの最近の研究では、NLP(自然言語処理)のデータセットとモデルの立場性と設計のバイアスを記述するためのパラダイムであるNLPositionalityを提案しています。研究者は、さまざまな文化的・言語的バックグラウンドを持つグローバルなボランティアコミュニティを採用し、データセットのサンプルに注釈を付けることで設計のバイアスを測定します。次に、異なるアイデンティティと文脈を対比させ、どのアイデンティティが元のデータセットのラベルやモデルの予測とより一致しているかを調べます。 NLPositionalityは、他の方法(有料のクラウドソーシングや実験室での実験など)と比較して3つの利点があります: 他のクラウドソーシングプラットフォームや従来の実験室研究と比較して、LabintheWildはより多様な参加者人口を有しています。 金銭的な報酬に頼るのではなく、この方法は参加者自身の自己認識を広げるという内発的な欲求に基づいています。参加者の学習の可能性が増し、データの品質が有料のクラウドソーシングプラットフォームと比較して向上します。したがって、他の研究で見られるような一回限りの有料研究とは異なり、このプラットフォームでは新しい注釈を自由に収集し、より最新の設計バイアスの観察を長期間にわたって反映することができます。 この方法は、任意のデータセットやモデルに事後に適用するための既存のラベルや予測を必要としません。 研究者は、社会的に受け入れられる性質と憎悪表現の検出という2つのバイアスのあるNLPタスクの例にNLPositionalityを使用しています。彼らはタスク固有とタスク一般の大規模な言語モデル(つまり、GPT-4)と関連するデータセットと教師付きモデルを調査します。2023年5月25日現在、平均して87カ国から1,096の注釈者が1日あたり38の注釈を提供し、16,299の注釈が寄せられました。チームは、英語圏の白人で大学教育を受けたミレニアル世代が「WEIRD」(Western, Educated, Industrialized, Rich, Democratic)人口のサブセットであり、調査対象のデータセットとモデルに最も適していることを発見しました。さまざまな情報源からデータと注釈を収集する重要性も、データセットが元の注釈者と高いレベルで整合していることによって強調されています。彼らの研究結果は、より多様なモデルとデータセットを含めたNLPの研究の拡大の必要性を示唆しています。

AIエントロピー:AIによって生成されるコンテンツの悪循環

もし自分自身を複製して一度に複数の場所にいることができるとしたら、全ての責任を楽々とこなすことができると想像してください1996年頃のSFコメディ映画『マルチプリシティ』を覚えていますか、そこではダグ・キニーが…

「AIは非英語母国語話者に差別的」

最近の研究で、人工知能(AI)について不安な真実が明らかになりました。エッセイや就職応募書類などの作品を検出するために使用されるアルゴリズムは、非英語のネイティブスピーカーに対して偶然にも差別的な扱いをする可能性があります。このバイアスの影響は広範囲にわたり、学生、学者、就職希望者などに影響を与えます。この研究は、スタンフォード大学の生物医学データ科学の助教であるジェームズ・ゾウ氏が率いたもので、AIテキスト検出システムによって引き起こされる驚くべき格差を明らかにしています。ChatGPTなどの生成型AIプログラムの台頭に伴い、これらの検出システムの正確性と公平性を厳密に検証することが重要です。 また読む: チートはもう終わり!Sapia.aiがリアルタイムでAI生成回答を検出! AIテキスト検出の予期せぬ結果 学術的な誠実さが重要視される時代において、多くの教育者はAI検出を現代のチート対策の重要なツールと見なしています。しかし、この研究は、これらの検出システムがしばしば広まる99%の正確性の主張は誤解を招くと警告しています。研究者たちは、非英語のネイティブスピーカーに対する偶然の差別を防ぐためにAI検出システムをより詳しく調査するよう求めています。 また読む: AI生成コンテンツのフラグ付けにより、巨大なストライキを引き起こしたMassive Stack Exchange Network テスト結果が非英語のネイティブスピーカーに対する差別を明らかにする Zou氏と彼のチームは、人気のあるAIテキスト検出システムの性能を評価するために厳格な実験を行いました。彼らは非ネイティブスピーカーによって書かれた91の英語のエッセイを7つの有名なGPT検出器に評価させました。その結果は驚くべきものでした。英語能力テスト(TOEFL)向けに設計されたエッセイの半分以上が誤ってAI生成とフラグ付けされました。あるプログラムでは、驚くべきことにエッセイの98%を機械生成と分類しました。対照的に、同じ評価を受けたアメリカのネイティブスピーカーの8年生によって書かれたエッセイは、検出器が90%以上を正しく人間による執筆と識別しました。 誤った主張:99%の正確性の神話 研究で観察された差別的な結果は、AI検出器が人間とAI生成テキストの区別を評価する方法に起因しています。これらのプログラムは、次の単語を予測する際に言語モデルが驚いたり混乱したりする程度を測定する「テキストの困惑度」という指標に依存しています。しかし、このアプローチは、非ネイティブスピーカーに対してしばしばより単純な単語選択や馴染みのあるパターンを使用する傾向があるため、彼らに対してバイアスをもたらします。ChatGPTなどの大規模な言語モデルは、低困惑度のテキストを生成するように訓練されており、非ネイティブスピーカーが誤ってAI生成と認識されるリスクを増大させることになります。 また読む: AI検出器がアメリカ合衆国憲法をAI生成とフラグ付け 物語の書き直し:逆説的な解決策 AI検出器の固有のバイアスを認識した研究者たちは、ChatGPTの能力をさらにテストすることにしました。彼らは、より高度な言語を利用してTOEFLのエッセイを書き直すようプログラムに依頼しました。驚くべきことに、これらの編集されたエッセイがAI検出器によって評価されると、すべてが正しく人間による執筆とラベル付けされました。この逆説的な発見は、非ネイティブの作家が検出を回避するためにより広範に生成型AIを利用する可能性があることを示しています。 また読む: ハリウッドの脚本家がAIツールに対してストライキ、それを「盗作機械」と呼ぶ 非ネイティブの作家に対する広範な影響 この研究の著者たちは、非ネイティブの作家にとってAI検出器がもたらす深刻な影響を強調しています。大学や就職の申請が誤ってAI生成とフラグ付けされる可能性があり、非ネイティブスピーカーはオンライン上で軽視されるかもしれません。AI生成コンテンツを低評価するGoogleなどの検索エンジンは、この問題をさらに悪化させます。最も重要な応用がある教育の場では、GPT検出器によって非ネイティブの学生がチートの罪で誤って非難されるリスクが増加します。これは彼らの学業と心理的な健康に悪影響を及ぼします。 また読む: EUがディープフェイクとAIコンテンツの識別策を求める…

新しいAI研究がGPT4RoIを紹介します:地域テキストペアに基づくInstruction Tuning大規模言語モデル(LLM)によるビジョン言語モデル

大型言語モデル(LLM)は最近、自然言語処理を必要とする会話タスクで驚異的なパフォーマンスを発揮し、大きな進歩を遂げています。商用製品のChatGPT、Claude、Bard、テキストのみのGPT-4、およびコミュニティオープンソースのLLama、Alpaca、Vicuna、ChatGLM、MOSSなどがその例です。彼らの前例のない能力のおかげで、彼らは汎用人工知能モデルへの潜在的なルートを提供しています。LLMの効果の結果として、マルチモーダルモデリングコミュニティは、ジョブの特徴空間を事前学習済み言語モデルの特徴空間に合わせるための普遍的なインターフェースとしてLLMを使用する新しい技術的な道を創造しています。 MiniGPT-4、LLaVA、LLaMA-Adapter、InstructBLIPなどのビジョンと言語のモデルは、代表的なタスクの1つとして画像とテキストのペアリングでの指示調整により、ビジョンエンコーダをLLMに合わせるようにアラインメントされます。アラインメントの品質は、指示調整の設計コンセプトに基づいてビジョンと言語のモデルのパフォーマンスに大きな影響を与えます。これらの作品は優れたマルチモーダルスキルを持っていますが、領域レベルのアラインメントにより、領域のキャプションや推論などのより複雑な理解タスクを超えることができません。彼らのアラインメントは画像とテキストのペアリングに限定されています。一部の研究では、MM-REACT、InternGPT、DetGPTなどの外部のビジョンモデルを使用して、ビジョン言語モデルで領域レベルの理解を提供しています。 ただし、彼らの非エンドツーエンドの設計は、汎用マルチモーダルモデルにとってより良い可能性があります。この作品は、関心領域の細かい理解を提供するために、最初から終わりまでビジョン言語モデルを開発することを目指しています。画像全体を画像埋め込みとして圧縮し、特定の部分を参照するための操作を行わないこれらのモデルのモデルアーキテクチャでは、空間指示にオブジェクトボックスを形式として確立します。回答を得るために、LLMは空間教育と言語的指示によって抽出されたビジュアル要素を提供されます。たとえば、問い合わせが「これは何をしているのか?」という交互のシーケンスの場合、モデルは空間指示によって参照される領域の特徴で置き換えます。 RoIAlignまたは変形可能なアテンションは、空間指示のための柔軟な実装方法です。これらは、画像とテキストのデータセットから領域とテキストのデータセットにトレーニングデータを更新し、領域とテキストのペアリング間の細かいアライメントを構築するために、各アイテムの境界ボックスとテキストの説明が提供されます。COCOオブジェクト識別、RefCOCO、RefCOCO+、RefCOCOg、Flickr30Kエンティティ、Visual Genome(VG)、Visual Commonsense Reasoning(VCR)などの公開データセットが組み合わされます。これらのデータセットは、指示調整のための形式に変更されます。さらに、商業的に利用可能な物体検出器を使用して、画像からオブジェクトボックスを抽出し、空間指示として利用することができます。LLaVA150Kなどの画像とテキストのトレーニングデータを活用するために、棚からひとつオブジェクト検出器を使用することもできます。彼らのモデルは、LLMに影響を与えることなく、領域特徴抽出器を事前トレーニングするために使用されます。 彼らのモデルは、これらの画像テキストデータセットから学習し、視覚的指示の調整に注意深く選択されたビジュアルインストラクションを持つため、対話品質が向上し、より人間らしい返答を生成します。収集されたデータセットは、テキストの長さに基づいて2種類に分けられます。まず、短いテキストデータにはアイテムのカテゴリや基本的な特徴に関する情報が含まれます。これらはLLMに影響を与えることなく、領域特徴抽出器を事前トレーニングするために使用されます。次に、より長いテキストには、複雑なアイデアや論理的思考が必要な場合があります。これらのデータには複雑な空間指示が提供され、エンドツーエンドの領域特徴抽出器とLLMの微調整が可能になります。これにより、実際の使用時に柔軟なユーザー指示をシミュレートすることができます。彼らの手法は、空間指示の調整から得られる利点により、ビジョン言語モデルのユーザーに、言語形式と空間指示形式の両方でモデルに問い合わせることができるユニークなインタラクティブな体験を提供します。 図1は、これにより、複雑な領域推論や領域キャプションなど、画像レベルの理解を超える新たな能力が実現することを示しています。結論として、彼らの作品は以下の点に貢献しています: • LLMに地域テキストデータセットのトレーニングを与えることで、地域レベルのビジョン言語モデルを進化させます。彼らのモデルは、以前の画像レベルのモデルと比較して、領域キャプションや推論などの追加機能を備えています。 • 応答を得るために、関心領域を参照するための空間指示を導入し、ビジュアルエンコーダから回復した領域特性を言語指示と共にLLMに提供します。 • コーディング、データセットの指示調整形式、オンラインデモはすべてGitHubで利用可能です。 図1: GPT4RoIと呼ばれるビジョン言語モデルは、領域とテキストのペアリングで大規模な言語モデル(LLM)を調整する指示調整に基づいて構築されています。単一の領域に口頭と位置情報を組み合わせたユーザーの指示を分析することができます。領域のキャプション付けや推論など、細かいマルチモーダル理解のタスクを達成します。

「Amazon SageMaker Hyperband 自動モデルチューニングを使用して、分散トレーニングの収束問題を効果的に解決する」

最近の数年間は、ディープラーニングニューラルネットワーク(DNN)の驚異的な成長が見られていますこの成長は、より正確なモデルや生成型AIによる新たな可能性の開拓(自然言語を合成する大規模な言語モデル、テキストから画像を生成するものなど)に現れていますDNNのこれらの増加した機能は、巨大なモデルを持つことと引き換えに実現されています

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us