Learn more about Search Results がん - Page 63

以下がSteamサマーセールのゲームをGeForce NOWでストリーミングする方法です

GFN Thursday(ジーエフエヌ・サーズデー)は、甘いSteam Summer Saleとともにやってきます。Valveの特別イベントにて、GeForce NOWでプレイ可能な数百のPCゲームが提供されます。 セール中には、OCTOPATH TRAVELERとOCTOPATH TRAVELER IIも新たにGeForce NOWのライブラリに加わります。今週は、5つの新しいゲームがサービスに追加されます。 セールで節約しましょう Steam Summer Sale中に、デバイス間でストリーミングできる素晴らしいゲームをお得な価格で手に入れましょう。7月13日まで、合計で1,000以上のタイトルが最大90%オフの割引価格で提供されます。 おすすめのゲームを選んでゲームコレクションを増やしましょう。 ゲームを楽しみながら節約しましょう。 Age of Empiresシリーズの象徴的なXbox Game Studiosのヒット作品をクラウド上でプレイしましょう。帝国を制御し、繁栄する文明に成長することを目指すゲームです。Age of Empires IIも今週、GeForce…

今年学ぶ価値のある最高報酬の言語5選

キャリアアップと給与アップのために、最も注目されているプログラミング言語を学ぶことで、あなたのコーディングスキルを向上させましょう!

トロント大学の研究者たちは、3300万以上の細胞リポジトリ上で生成事前学習トランスフォーマーに基づいたシングルセル生物学のための基礎モデルであるscGPTを紹介しました

自然言語処理とコンピュータビジョンは、生成学習済みモデルが驚異的に成功した分野の例の一部です。特に、基盤モデルを構築するための実行可能な戦略は、様々な大規模データセットを事前学習されたトランスフォーマーと組み合わせることです。この研究では、言語と生物構造(テキストが遺伝子を構成し、それぞれ単語と細胞を特徴付ける)の関連性を引き出すことで、基盤モデルが細胞生物学と遺伝学のさらなる研究を促進する可能性を調査しています。研究者たちは、シングルセル配列データの増加するデータベースを横断する生成学習済みトランスフォーマーに基づくシングルセル生物学のための基盤モデルであるscGPTを構築する最前線にいます。結果は、事前学習された生成トランスフォーマーであるscGPTが、遺伝子と細胞に関連する重要な生物学的洞察を効率的に抽出することを示しています。転移学習を新たな方法で使用することで、スクリプトはさまざまなアプリケーションで改善することができます。これらの課題には、遺伝子ネットワークの推論、遺伝子の変異予測、およびマルチバッチ統合が含まれます。scGPTのソースコードを表示する。 一つ一つの細胞の詳細な特性を容易にし、疾患の発症機序の理解、特異的な細胞系譜の追跡、病原性の解明、および患者固有の治療アプローチの開発に貢献するシングルセルRNAシーケンシング(scRNA-seq)は、細胞性の異質性の調査、系譜の追跡、病原性の解明、および患者固有の治療アプローチの開発への道を切り拓きます。 シーケンシングデータの指数関数的な増加を考慮すると、これらの新しいトレンドを効果的に活用し、適応する方法を作成することが急務です。基盤モデルの生成学習は、この困難を克服するための効果的な戦略です。大規模なデータセットから学習する生成学習は、最近さまざまなドメインで驚異的な成功を収めています。人気のある用途には、自然言語生成(NLG)とコンピュータビジョンがあります。これらのベースラインモデルには、DALL-E2やGPT-4などがあります。これらは大規模な異種データセットでトランスフォーマーを事前学習し、特定の下流タスクとシナリオに簡単に適応できるという原則に基づいています。さらに、これらの事前学習された生成モデルは常にカスタムトレーニングされたモデルよりも優れた性能を発揮します。 研究者たちは、NLGの自己教師あり事前学習手法からヒントを得て、大量のシングルセルシーケンシングデータのモデリングを改善しています。自己注意トランスフォーマーは、テキストの入力トークンをモデリングするための有用で効率的なフレームワークであることが証明されています。 100万以上の細胞で生成学習を行うことにより、これらの科学者たちは、シングルセル基盤モデルであるscGPTを構築する初めての試みを提供しています。彼らは、方法論とエンジニアリングの問題の両方に対処し、大量のシングルセルオミックスデータの事前学習を行うための新しいアプローチを示しています。彼らは、数百のデータセットを格納するためのクイックアクセスを持つインメモリデータ構造を使用して、大量のデータに対処することができます。彼らはトランスフォーマーアーキテクチャを修正して、細胞と遺伝子の表現を同時に学習し、非順序のオミックスデータに適した統一された生成学習アプローチを構築します。また、事前学習モデルをさまざまな下流タスクで使用できるようにするために、モデルの微調整用にタスク固有の目的を持つ標準パイプラインも提供します。 これらの3つのコンポーネントを通じて、scGPTモデルはシングルセル基盤コンセプトの革新的なポテンシャルを示しています。それは、scGPTから始まる、さまざまな下流活動への転移学習をサポートする最初の大規模な生成基盤モデルです。彼らは、細胞型注釈、遺伝子変異予測、バッチ補正、およびマルチオミックス統合において最先端のパフォーマンスを達成することで、シングルセルオミクスの計算アプリケーションに対する「普遍的な事前学習、オンデマンドでの微調整」アプローチの有効性を実証しています。 特に、scGPTはscATAC-seqデータや他のシングルセルオミクスを組み込むことができる唯一のベースモデルです。第二に、scGPTは、洗練されたモデルと生の事前学習モデルの遺伝子の埋め込みと注意の重みを比較することで、特定の条件下での遺伝子間相互作用に関する重要な生物学的洞察を明らかにします。第三に、結果はスケーリングの法則を示しており、事前学習フェーズでより多くのデータを使用することにより、より良い事前学習埋め込みとより高い下流タスクのパフォーマンスが得られます。この発見は、基盤モデルが研究コミュニティに利用可能なシーケンシングデータがますます利用可能になるにつれて着実に改善する可能性を強調しています。これらの結果を踏まえて、彼らは、事前学習された基盤モデルを使用することで細胞生物学の知識を大幅に増やし、この分野の将来の進歩の基礎を築くことができるという仮説を立てています。scGPTモデルとワークフローを一般に公開することで、これらおよび関連する分野の研究が強化され、加速されます。 このスクリプトは、研究者によって説明されたように、大量のシングルセルデータを理解するために事前学習されたトランスフォーマーを使用する新しい生成学習済み基盤モデルです。chatGPTやGPT4などの言語モデルで、自己教師あり事前学習が効果的であることが証明されています。シングルセルの研究では、彼らは同じ戦略を使って複雑な生物学的な関係を解読しました。細胞の異なる側面をよりよくモデリングするために、scGPTはトランスフォーマーを使用して遺伝子と細胞の埋め込みを同時に学習します。シングルセルGPT(scGPT)は、トランスフォーマーの注意機構を使用して、シングルセルレベルでの遺伝子間相互作用を捉え、新しい解釈可能性の次元を追加します。 研究者は、ゼロショットとファインチューニングのシナリオでの包括的な研究を行い、事前トレーニングの価値を証明しました。訓練されたモデルは、任意のデータセットの特徴抽出器として既に機能します。ゼロショットの研究では、顕著な細胞塊が表示される印象的な外挿能力が示されました。さらに、scGPTの学習済み遺伝子ネットワークと以前に確立された機能関係の間には高い一致度があります。私たちは、遺伝子間相互作用を捉え、既知の生物学的情報を効果的に反映するモデルの適切な発見能力を信じています。また、いくつかのファインチューニングを行うことで、事前トレーニングされたモデルによって学習された情報をさまざまな後続タスクに活用することができます。最適化されたscGPTモデルは、セルタイプの注釈、マルチバッチ、マルチオミック統合といったタスクで、スクラッチからトレーニングされたモデルを定期的に上回ります。これにより、事前トレーニングされたモデルが精度と生物学的関連性を向上させることで、後続タスクへの利益が示されます。全体的に、テストはscGPTの事前トレーニングの有用性を示し、一般化能力、遺伝子ネットワークの把握、転移学習を活用した後続タスクの性能向上の能力を示しています。 主な特徴 ジェネラリスト戦略により、シングルセル研究において統合されたマルチオミック解析とパーティクル予測を単一のモデルで実行することができます。 学習済みの注意重みと遺伝子埋め込みを使用して、特定の条件下での遺伝子間相互作用を特定することができます。 データ量の増加とともにモデルの性能が持続的に向上するスケーリング則を特定しました。 scGPTモデルゾーには、さまざまな実質的な臓器用の多くの事前トレーニング済み基礎モデル(GitHub参照)と包括的なパンガンサーモデルがあります。最適な出発点モデルを使用してデータを探索を開始してください。 事前トレーニングは、マルチオミックデータ、空間オミックス、さまざまな疾患状態を含むより大規模なデータセットで行われることが期待されています。モデルは、パーティクルと時間軸データが事前トレーニングフェーズに含まれる場合、因果関係を学習し、遺伝子や細胞が時間経過に応答する方法を推定することができます。事前トレーニングモデルの学習内容をより理解し解釈するためには、広範な生物学的に有意なタスクでモデルを検証することが理想的です。さらに、単一細胞データのための文脈に関する知識を調査することを目指しています。事前トレーニングされたモデルは、ゼロショット構成で追加のファインチューニングなしで新しいジョブや環境に適応する必要があります。さまざまな研究の微妙さとユニークなニーズを理解するように教育することで、scGPTの有用性と適用範囲を多くの研究コンテキストで向上させることができます。事前トレーニングパラダイムは、シングルセル研究で容易に実装できると期待されており、急速に拡大するセルアトラスの蓄積された知識を活用するための基盤を築くものとなるでしょう。

AWSとPower BIを使用して、米国のフライトを調査する

∘ 問題の説明 ∘ データ ∘ AWSアーキテクチャ ∘ AWS S3を使ったデータストレージ ∘ スキーマの設計 ∘ AWS Glueを使ったETL ∘ AWS Redshiftを使ったデータウェアハウジング ∘ インサイトの抽出...

2023年のトップDNSプライバシーツール

オンラインの世界は以前にも増して膨大なデータを利用できるようになった一方で、サイバー犯罪者が攻撃を行うのも容易になっています。ウェブを閲覧している際には、不注意なクリック一つでマルウェアをダウンロードしたり、フィッシング詐欺の被害に遭うことがあります。サイバー犯罪から身を守るため、企業はDNS保護ソリューションにますます頼るようになっています。 ネットワーク向けのDNSセキュリティツールとしての私たちのトップピックは以下の通りです。 CleanBrowsing CleanBrowsingは、ユーザーのブラウザーに結果を返す前にインターネットのクエリをフィルタリングし、防止するDNSリゾルバです。URLからIPアドレスのマッピングのデータベースを保持する代わりに、DNSリゾルバはリモートのDNSサーバーからこの情報を要求します。CleanBrowsingシステムは、要求されたURLのクイックスキャンを実行して、それが正当であり、トロイの木馬やその他のマルウェアのダウンローダーを含んでいないことを確認します。要求されたページが有効な場合、DNSリゾルバはページのIPアドレスで応答します。 Vercara UltraDNS ウェブサイトのダウンタイムから保護する場合、Vercara UltraDNSは素晴らしい選択肢です。Vercaraの近くに拠点を持つ企業は、Vercara UltraDNSの高いスループット、低遅延、およびインスタントキャッシュホストを利用することができます。会社のウェブサイトが攻撃を受けやすい場合、Vercara UltraDNSの利用を検討してください。また、何らかの理由でサイトのDNSエントリが壊れる可能性もあります。DNSエントリが誤ったIPアドレスを与えると、誰もあなたのサイトを見ることができません。このサービスは、6つの大陸に広がる29のノードが存在するため、技術的および地理的な災害の影響から保護されています。アプリケーション自体には、DDoS攻撃を防止するためのローカルミチゲーション機能が備わっています。 Comodo Dragon Secure Internet Gateway Comodo Dragon Secure Internet Gatewayのバックボーンを形成するのはDNSサービスであり、エッジサービスを提供しています。プラットフォームの機能を利用するには、ネットワークのインターネットゲートウェイのデフォルトのDNSサーバー設定を変更する必要があります。サービスを安全に利用するためには、リモートワーカーは個人のコンピューターのDNSサーバー設定を変更する必要があります。iOSおよびAndroidモバイルデバイスの保護も、このシステムの使用目的の一つです。このクラウドベースのサービスは、インターネット上のコンテンツをフィルタリングします。特定のウェブサイトへのアクセスをユーザーからブロックし、ビジネス用のコンテンツコントロールを含みます。ホワイトリストとブラックリストも、このツールが提供する追加の機能です。 Cloudflare Cloudflareは、第一級の代替DNSサービスです。すべてのドメインを1か所から制御することができます。Cloudflareの平均DNSルックアップ速度は11msであり、このサービスの人気の大きな要因です。CloudflareがセカンダリDNSプロバイダーとして設定されている場合、プライマリDNSプロバイダーが更新されるたびにそのレコードをすぐに更新します。Cloudflareには自動フェイルオーバーと負荷分散の機能が組み込まれており、最大限の安全性が確保されています。故障や停止時にも、これらの機能によりDNSは正常に機能し続けます。 Palo Alto…

ウェブと組み込みシステムにおけるRustの実行のための9つのルール

ユーザーの要求に応じて、私は最近、range-set-blazeというクレートをWebページ内で動作するように変換しましたまた、マイクロコントローラー(組み込み)でも動作するようにしました(range-set-blazeクレートは効率的に操作を行います...

5つのAI自動化エージェンシーのアイデア(毎月45,000ドルを稼ぐための)

このAIビジネスモデルは、オンラインビジネスにおいて次の大きなトレンドと予測されています...

AIが詐欺師をだます:ロボコールに対する巧妙な戦い

アメリカのFCC(連邦通信委員会)がロボコールに対する取り締まりを強化しようとしているにもかかわらず、ロボコールは未だにしつこい迷惑行為として続いており、人をだますことを狙っている無防備で弱い人々に付け込んでいます。しかし、1人の起業家が独自の方法で反撃する方法を見つけました。ジョリー・ロジャー・テレフォン・カンパニーの仕掛け人であるロジャー・アンダーソン氏にお会いしましょう。彼は人工知能(AI)を利用して詐欺師を騙す方法を開発しました。この記事では、アンダーソン氏の独創的な解決策が、ChatGPTと音声クローナーを搭載したボットを利用してテレマーケティングの詐欺師を出し抜く方法について探求します。彼らの時間を無駄にし、最終的には彼らに金銭的な損失を与える方法です。 ロボコールに立ち向かう ロボコールは、アメリカ全土の消費者に依然として問題を引き起こしており、1つの電話番号当たり月平均14回のコールがあります。これらの多くは、未熟な人々や高齢者を狙った詐欺です。FCCの取り組みにもかかわらず、ロボコールは革新的な解決策を求める持続的な問題です。 ロジャー・アンダーソンとジョリー・ロジャー・テレフォン・カンパニー ジョリー・ロジャー・テレフォン・カンパニーのオーナーであるロジャー・アンダーソン氏は、ロボコールに対抗するための非常に斬新なアプローチを考案しました。アンダーソン氏の会社はAI技術を活用して、テレマーケティングの詐欺師を線上で引き留め、彼らの時間とリソースを無駄にします。ただし、アンダーソン氏の動機は個人の娯楽にとどまりません。彼は一般の人々にリーズナブルな料金で自分のシステムを利用する機会を提供しています。 詳しくはこちら:コールセンターのサポート業務におけるNLPの応用 簡単なセットアップとエンドレスなエンターテイメント ジョリー・ロジャー・テレフォン・カンパニーのシステムの設定は非常に簡単です。ユーザーは年間25ドルのプランに申し込み、アカウントに関連付けられた一意の番号に通話転送をアクティベートする必要があります。そこから、ユーザーはボットにロボコールを処理させるか、通話をマージしてAIによる会話の面白さをこっそりと聞くことができます。 多様なボットの人格 ジョリー・ロジャー・テレフォン・カンパニーのシステムのハイライトの1つは、利用可能な多様なボットの人格です。例えば、「ホワイティ」ホワイトビアードは、しばしば不満を言ったり気を散らしたりする高齢の不機嫌な人物です。また、Salty Sallyは、騒々しい子供たちを抱える忙しい専業主婦の役割を果たします。これら多様な人物像により、詐欺師とのやり取りがさらに面白くなります。 ボットはどのようにやり取りするのですか? 一般的な認識とは異なり、詐欺師とはChatGPTが直接対話しているわけではありません。代わりに、ジョリー・ロジャー・システムは詐欺師の発言を分析し、その内容に関連する事前にプログラムされた応答を選択します。声は人間のように聞こえるかもしれませんが、フレーズは繰り返されることがあり、自然ではないことがあり、時には幻想を破ることもあります。それでも、ボットは最大15分間詐欺師を引きつけ、他の潜在的な被害者を狙うことを防ぎます。 詐欺師の正体を暴く – ホワイティ・ホワイトビアードの出会い 広く共有されたYouTubeの動画では、ジョリー・ロジャーが、ホワイティ・ホワイトビアードとDish Networkの代表をなりすましている詐欺師との会話を明らかにしました。なりすまし犯はTVサービスについて話そうとしますが、ホワイティは農場の仕事に夢中で興味を示しません。会話が進むにつれて、ホワイティは仕事に集中し、なりすまし犯はTV番組の話題に固執します。ホワイティは、詐欺師がロボットや録音かもしれないと疑い、電話の相手の正体を疑います。結果として、ホワイティのユーモラスな気晴らしは、詐欺師が個人情報や請求情報を収集するのを防ぎ、他の人々を詐欺の被害から守る可能性があります。 詐欺師をだます先駆者たち ジョリー・ロジャー・テレフォン・カンパニーは、革新的なアプローチで大きな注目を集めていますが、これはこの戦略を採用した最初の企業ではありません。2008年から活動しているチャットボット「Lenny」もロボコーラーをいら立たせています。ただし、Lennyは人間のオペレータに連絡するためにキープレスが必要であることを認識することができません。これは現在の詐欺師が頻繁に利用する戦術です。一方、ジョリー・ロジャーのボットは自動ダイヤラーの発言を検出し、適切なキーを自動的に「押す」ことができます。これにより、通話が早期に切断されるのを防ぎます。 私たちの言葉 ロボコールは続くかもしれませんが、ロジャー・アンダーソンと彼のジョリー・ロジャー・テレフォン・カンパニーの創意工夫により、反撃する方法があります。詐欺師たちは、AIで動作するボットと巧妙な声の人格を利用して、挫折させられ、出し抜かれています。簡単なセットアッププロセスと無限のエンターテイメントで、個人はロボコール詐欺師の捕食的な戦術から自分自身を守ることができます。今こそ、AIを利用して詐欺師を騙す番です。

合成データのフィールドガイド

データを扱いたい場合、どのような選択肢がありますか?できるだけざっくりした回答をお伝えします実際のデータを入手するか、偽のデータを入手するかのどちらかです前回の記事では、私たちは...

共分散と相関の違いは何ですか?

イントロダクション 統計の広範な領域において、変数間の複雑な関係を理解し解き放つことは重要です。 データ駆動型の意思決定、科学的な発見、予測モデリングなど、複雑なデータセット内の隠れた関連やパターンを解き明かす能力に依存しています。この追求を支えるさまざまな統計基準の中で、共分散と相関は重要であり、変数間の独立性に関する洞察を提供します。 共分散と相関は統計解析において頻繁に発生する変数ですが、多くの人々が誤解したり、相互に交換可能に使用したりすることがあります。これら2つの基準を区別する微妙なニュアンスは、統計的な関係の解釈と活用に深い影響を与える可能性があります。 したがって、共分散と相関の真の性質を理解することは、データの全ポテンシャルを明らかにしようとするデータ愛好家や専門家にとって非常に重要です。 このブログ「共分散と相関」では、これら2つの統計的概念の違いを説明し、その関係を解明します。 また、Analytics Vidhyaの「データサイエンスのためのSwift学習」コースでスキルを向上させ、データサイエンスのキャリアを活性化しましょう。 共分散 2つのランダム変数間の系統的な関連性を示す統計用語であり、もう一方の変数の変化が1つの変数の変化を反映することを示します。 共分散の定義と計算 共分散は、2つの変数が直接的または逆比例しているかどうかを示します。 共分散の式は、データセット内のデータポイントをその平均値から求めます。たとえば、次の式を使用して、2つのランダム変数XとYの共分散を計算できます: 上記の手順において、 共分散値の解釈 共分散値は、変数間の関係の大きさと方向(正または負)を示します。共分散値は-∞から+∞の範囲を持ちます。正の値は正の関係を示し、負の値は負の関係を示します。 正の共分散、負の共分散、およびゼロ共分散 数値が高いほど、変数間の関係は依存性が高くなります。それぞれの共分散の種類を理解しましょう: 正の共分散 2つの変数間の関係が正の共分散である場合、それらは同じ方向に進化しています。これは変数間の直接的な関係を示しています。したがって、変数は同様に振る舞います。 変数の値(小さいまたは大きい)が、他の変数の重要性と等しい場合、変数間の関係は正の共分散となります。 負の共分散 負の共分散は、2つのランダム変数間の負の関係を示します。この場合、変数は逆方向に動きます。 正の共分散とは異なり、1つの変数の増加に対応して他の変数の値が減少し、その逆も同様です。…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us