Learn more about Search Results A - Page 615

大型言語モデルへの優しい導入

こんにちは、この「大規模言語モデル(LLM)の簡単な紹介」にたどり着いてうれしいですさて、ここにいるということは、おそらく髪を引き抜いてしまうほど悩んでいるのでしょうね...

ランダムフォレストの解釈

近年、大型言語モデルについて大いに盛り上がりがありますが、それは従来の機械学習手法が絶滅の運命を辿るべきだということではありません私は、ChatGPTがデータセットを与えられた場合に役立つとは疑っています...

「すべての道はローマに通じるのですか?」

最近、ハーバードのデーターバース上で「ローマ道路ネットワーク(バージョン2008)」という興奮するデータセットを見つけましたこれは完璧なGIS形式で表現された、ローマ帝国の歴史的な道路ネットワークです...

ITUデンマークの研究者は、神経発達プログラムを紹介:生物の成長と人工ニューラルネットワークとの間のギャップを埋める

人間の脳は非常に複雑な器官であり、しばしば既知の宇宙において最も複雑で洗練されたシステムの1つと考えられています。脳は階層的に構成され、下位レベルの感覚処理領域が情報を上位レベルの認知と意思決定の領域に送信します。この階層化により、知識と複雑な行動の統合が可能になります。脳は情報を並列処理し、さまざまな知覚、認知、運動制御の側面に同時に取り組むさまざまな領域とネットワークが同時に作業することで、その効率性と適応性を高めています。 この階層化の組織と並列処理の技術を深層学習に適用することはできるのでしょうか?はい、その研究分野はニューラルネットワークと呼ばれています。コペンハーゲン大学の研究者たちは、各ニューロンで実行されるもう1つのネットワークによってポリシーネットワークの成長が制御されるグラフニューラルネットワーク型のエンコーディングを提案しています。これは Neural Developmental Program (NDP) と呼ばれています。 生物学的なプロセスの一部では、コンパクトな遺伝子型をより大きな表現型にマッピングすることがあります。これに着想を得て、研究者たちは間接エンコーディング方法を構築しました。間接エンコーディングでは、解決策の説明が圧縮されます。これにより情報を再利用でき、最終的な解決策には説明自体よりも多くのコンポーネントが含まれます。ただし、これらのエンコーディング(特に間接エンコーディングファミリー)は開発される必要があります。 NDPアーキテクチャには、マルチレイヤーパーセプトロン(MLP)とグラフセルラーオートマトン(GNCA)が含まれています。これは発達段階の各メッセージパッシングステップ後にノードの埋め込みを更新します。一般的に、セルオートマトンはいくつかの状態のうちの1つでグリッド上のセルから構成される数学モデルです。これらのオートマトンは、セルの状態が時間の経過とともにどのように変化するかを決定する一連のルールに基づいて離散的な時間ステップで進化します。 NDPでは、同じモデルがすべてに適用されます。したがって、操作されるグラフのサイズに関してパラメータの数は一定です。これにより、NDPは任意のサイズやアーキテクチャのニューラルネットワーク上で作業することができる利点があります。NDPニューラルネットワークは、任意の目的関数を満たすために任意のブラックボックス最適化アルゴリズムでトレーニングすることもできます。これにより、ニューラルネットワークは強化学習や分類タスクを解決し、トポロジカルな特性を示すことができます。 研究者たちは、異なる可能性の成長ステップ数でトレーニングされたモデルを比較して、微分可能なNDPを評価しようとしました。ほとんどのタスクでは、成長ステップ数が一定の値を超えると、ネットワークのパフォーマンスが低下することが観察されました。これは、新しいモードがネットワーク内でより大きくなったためです。ステップの成長を停止するタイミングを自動的に知るためには、自動化された方法が必要です。彼らはこれがNDPへの重要な追加になると述べています。また、将来的にはNDPに対して活動依存性と報酬調整型の成長と適応技術を組み込む予定です。

テキスト生成の評価におけるベクトル化されたBERTScoreのビジュアルガイド

『AIベースのテキスト生成は明らかに主流に入ってきています自動化されたライティングアシスタントから法的文書の生成、マーケティングコンテンツの生成、メールの執筆など、様々な領域で活用されています…』

3Dインスタンスセグメンテーションにおける境界の打破:改善された疑似ラベリングと現実的なシナリオを備えたオープンワールドアプローチ

オブジェクトインスタンスレベルの分類と意味的なラベリングを提供することにより、3D意味インスタンスセグメンテーションは、点群またはメッシュで表される与えられた3Dシーン内のアイテムを識別しようとするものです。ロボット、拡張現実、自動運転など、3D空間でのオブジェクトのセグメンテーションの能力に依存する多くのビジョンアプリケーションがあります。深度データの収集に使用されるセンサーの進歩に伴い、文献で説明されているインスタンスレベルの注釈の付いた多数の3Dデータセットがあります。大規模な3Dデータセットの利用可能性と深層学習技術の進歩を受けて、最近では多くの3Dインスタンスセグメンテーションの戦略が提案されています。 公にアクセス可能なデータセットへの依存度による3Dインスタンスセグメンテーションシステムの主な欠点は、事前に決められたアイテムラベル(ボキャブラリー)の学習です。しかし、実際の世界にはたくさんのオブジェクトクラスがあり、推論には多くの未知または不明なクラスが含まれる可能性があります。未知のクラスは現在の技術では学習セットには含まれず、またバックグラウンド要素として扱われます。これにより、知識のある識別アルゴリズムは、背景要素ではない未識別または異常な物体を認識することができません。最近の研究では、未知のアイテムの検出の重要性により、2Dオブジェクト識別のためのオープンワールド学習の設定が調査されています。 モデルはオープンワールド環境で未知のアイテムを認識することを目指しています。新しいクラスにラベルが付けられると、新しいセットは再学習せずに徐々に学習されることが望ましいです。以前のアプローチは主にオープンワールド2Dオブジェクト識別に推奨されてきましたが、3D領域ではまだ調査されていません。アイテムが3Dでどのように見え、背景と他のオブジェクトカテゴリから分離されるかを理解することが最大の課題です。図1の3Dインスタンスセグメンテーションは、オープン環境で未知のオブジェクトを認識し、これらの新しいクラスのアノテーションについてオラクルに質問することができるため、モデルにより柔軟性が提供されます。さらなるトレーニングのため。 図1: オープンワールド3Dインスタンスセグメンテーション。モデルは各反復学習フェーズで新しいアイテムを発見し、人間オペレーターはこれらのいくつかにラベルを割り当てて現在の知識ベースに追加し、引き続きトレーニングします。 しかし、この戦略にはいくつかの欠点があります。優れた擬似ラベリング手法が必要な要素が3つあります:(i)未知のクラスの注釈の欠如、(ii)既知のクラスと未知のクラスの予測された特徴の類似性、および(iii)3Dポイントクラウドのための優れたオブジェクト性スコアリング方法の必要性。この研究では、Mohamed Bin Zayed University of Artificial Intelligence(MBZUAI)、Aalto University、Australian National University、およびLinköping Universityの研究者が、オープンワールド屋内3Dインスタンスセグメンテーションと呼ばれる独自の問題設定を調査します。これにより、新しいクラスを徐々に追加しながら、未知のクラスのオブジェクトをセグメンテーションしようとします。彼らは3Dインスタンスセグメンテーションのオープンワールド環境での調査では、彼らの技術とオラクルとのパフォーマンスギャップを埋めるための提案されたソリューションの価値を多数のテストで証明しています。 彼らの研究には以下の主な貢献があります: • 彼らは、特定の機構を持つオープンワールド3D屋内インスタンスセグメンテーション手法を提供し、3D未知のアイテムを正確に識別するための特別な自動ラベリング手法を使用します。トレーニング中に既知のクラスラベルと分からないクラスラベルを区別するための擬似ラベルを生成するために、確率的に補正された未知のクラスラベルを使用します。また、オブジェクト性スコアの分布に基づいて未知のクラスの可能性を修正することにより、推論時の擬似ラベルの品質をさらに向上させます。 • オープンワールド3D屋内セグメンテーションの徹底的な評価のために、彼らは知られたクラスと未知のクラス、および200以上のコースにわたるインクリメンタル学習を持つ慎重に選択されたオープンワールド分割を提示します。彼らの提案された分割では、オブジェクトクラスの固有分布(頻度ベース)、室内空間を探索する際の異なるクラスタイプ(領域ベース)、および外部世界でのオブジェクトクラスのランダム化など、さまざまな現実的な状況が使用されています。多くのテストは、彼らの手法とオラクルとのパフォーマンスギャップを縮めるための提案されたソリューションの価値を証明しています。

敵対的なバイアス排除とは、公正な分類を実現するための手法です

この記事では、分類と公平性指標に基づいた所得予測の二値分類問題を開発し、分析しますまた、Adversarial Debiasingに基づく公平な分類器も作成します...

人工ニューラルネットワークのパフォーマンスを最適化するための深い理解

神経ネットワークは、異なる入力パラメータに依存して決定や予測を行うための構造です一般的に、それは人間の脳の神経細胞の操作的な振る舞いを模倣しようとしますが、...

イメージセグメンテーション:詳細ガイド

画像セグメンテーションとは、コンピュータ(またはより正確にはコンピュータに保存されたモデル)が画像を取り込み、画像内の各ピクセルを対応するカテゴリに割り当てる能力を指します例えば、それは...

「ゼロからの実験オーケストレーション」

この投稿では、なぜ実験のオーケストレーションが重要なのか、既存のオーケストレーションソリューション、MongoDBを使用して独自のオーケストレータを構築する方法、およびいくつかの使用例でそれが有益である理由について探求します...

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us