Learn more about Search Results A - Page 609

「GPT-4の高度なデータ分析ツールを使用した多様な棒グラフ分析」

「GPT-4の高度なデータ分析ツール(ADA)は、データサイエンスのツールボックスに追加する必須のツールです複雑なデータセットを迅速かつ効率的に理解することができますバーチャート分析には、...」

GoogleとJohns Hopkins Universityの研究者は、テキストから画像生成のためのより速く効率的な蒸留方法を明らかにします:拡散モデルの制限を克服する

高品質で多様な効果を生み出すことにより、大規模データで訓練されたテキストから画像への変換モデルは、生成タスクを大幅に支配しています。最近のトレンドでは、画像の変形、エンハンス、またはスーパーレゾリューションなどの典型的な画像変換タスクは、事前訓練されたテキストから画像への生成モデルを用いて、外部画像条件によって生成された結果によってガイドされます。事前訓練モデルによって導入された拡散先は、さまざまな変換手順における条件付き画像生成の視覚的品質を著しく向上させることが証明されています。一方、拡散モデルは頻繁に多くの反復を必要とする反復的な洗練プロセスに大いに依存しており、効果的に完了するには時間がかかることがあります。 解像度の高い画像合成への依存度はさらに高まります。たとえば、高度なサンプリング技術を使用しても、最新のテキストから画像への潜在拡散モデルでは、20〜200のサンプルステップがしばしば必要とされます。遅いサンプリング期間は、上記の条件付き拡散モデルの実用的な適用範囲を制限しています。最近の拡散サンプリングの高速化の試みは、蒸留技術を使用しています。これらの技術により、サンプリングを大幅に高速化し、4〜8ステップで終了させることができますが、生成パフォーマンスにほとんど影響を与えません。最近の研究では、これらの技術は既に訓練された大規模なテキストから画像への拡散モデルを凝縮するためにも使用できることを示しています。 図1は、我々の手法が非条件付きモデルを即座に条件付き拡散モデルに変換する様子を示しています。 彼らは提案されたアプローチの様々な条件付きタスクにおける蒸留モデルの出力を提供し、拡散先を凝縮したサンプリング期間で再現する能力を示しています。 これらの蒸留方法に基づいて、条件付き拡散モデルを蒸留するためには、蒸留最初または条件付きチューニング最初の2つのステージ蒸留プロセスを利用することができます。同じサンプリング期間が与えられた場合、これらの2つの手法は通常、蒸留されていない条件付き拡散モデルよりも優れた結果を提供します。ただし、クロスタスクの柔軟性と学習の難易度に関して異なる利点があります。本研究では、既に訓練された非条件付き拡散モデルから条件付き拡散モデルを抽出するための新しい蒸留方法を提案します。彼らのアプローチは、伝統的な2段階の蒸留技術とは異なり、非条件付け事前訓練から始まり、蒸留された条件付き拡散モデルで終了する単一のステージを特徴としています。 図1は、与えられた視覚的設定からの手がかりを活用することで、彼らの蒸留モデルがわずか1/4のサンプリングステップで高品質な結果を予測できることを示しています。このシンプルな学習により、元のテキストから画像へのデータは必要ありません。以前の蒸留プロセスでは必要であったものです。また、最初のステージでのファインチューニング手法を使用する場合によくある誤りである事前訓練モデルの拡散先の犠牲を避けます。広範な実験データによると、同じサンプル時間が与えられた場合、彼らの蒸留モデルは視覚的品質と定量的パフォーマンスの両方で従来の蒸留技術よりも優れた結果を示します。 条件付き生成のためのパラメータ効率の高い蒸留技術に関する研究がさらに必要な分野です。彼らは、パラメータ効率の高い新しい蒸留メカニズムを提供するアプローチを示しています。追加の学習可能なパラメータをいくつか追加することで、非条件付き拡散モデルを条件付きタスクに対応させることができます。特に、彼らの公式は、T2I-AdapterやControlNetなど、既に使用されているパラメータ効率の高い調整技術との統合を可能にします。条件付きアダプタの追加された学習可能なパラメータと元の拡散モデルの固定パラメータの両方を使用することで、彼らの蒸留技術は反復的な修正を最小限に抑えつつ、依存タスクのための拡散先を再現することを学習します。この新しいパラダイムにより、いくつかの条件付きタスクの有用性が大幅に向上しました。

フーリエ変換を用いた季節変動のモデリング

「ターゲットデータにフーリエ変換を適用して、時系列予測モデルの性能を向上させる方法」

スタンフォードの研究者たちは、分散変換の問題に適したシンプルかつスケーラブルな拡張であるDDBMsを提案しています

拡散モデルは最近、人工知能コミュニティで多くの成功と注目を浴びています。生成モデルの一種であるこれらのモデルは、データをノイズに変換する拡散プロセスを効果的に逆転させることができるため、複雑なデータ分布を理解することができます。この手法は、特に高品質な画像の生成において、従来のGANベースの技術を凌駕する成果を上げています。近代のテキストから画像を生成するAIシステムの開発は、これらの拡散モデルの進展によって可能になりました。 拡散モデルは一部の領域では非常に優れた性能を発揮していますが、他の領域ではそうではありません。画像の変換などのアプリケーションには適用が難しいです。このようなアプリケーションでは、対応する二つの画像のマッピングが目標であり、事前に存在するランダムノイズの分布を前提としています。この問題に対処するためには、モデルの訓練やサンプルアプローチの手動調整などの複雑な手法が頻繁に使用されます。しかし、これらの手法は理論的な根拠が弱く、通常は破損した画像から正しい画像への一方向のマッピングをサポートし、サイクルの一貫性の概念を排除しています。 従来の拡散モデルの枠組みとは対照的に、研究チームはデノイジング拡散ブリッジモデル(DDBMs)として知られる新しいユニークな戦略を導入しました。拡散ブリッジは、エンドポイントとして指定された二つの対応する分布の間を滑らかに補完する一連のプロセスのクラスであり、DDBMsはこのアイデアを利用しています。DDBMsは、ランダムノイズから開始するのではなく、データから拡散ブリッジのスコアを直接導出します。その後、学習済みスコアは、一つのエンドポイント分布から他のエンドポイント分布へマッピングする際に確率微分方程式を解くことによってモデルを誘導します。 DDBMsの持つ多様な生成モデルの組み合わせ能力は、その主要な利点の一つです。OT-Flow-Matchingおよびスコアベースの拡散モデルのコンポーネントを容易に組み合わせることができます。これにより、現在の設計上の決定やアーキテクチャ戦略を適応させてより一般的な課題に対処することができます。 研究チームは、実証分析のために困難な画像データセットにDDBMsを適用し、ピクセルレベルおよび潜在空間モデルの双方を考慮しました。DDBMsは、一般的な画像変換タスクにおいてベースラインアプローチを大幅に上回り、画像の変更に対処する際の適性を示しました。DDBMsは、ソースの分布がランダムノイズであると仮定した場合に、画像生成に特化した最先端の技術と競争力のある結果を生み出します(FIDスコアで評価)。 これは、DDBMsが与えられた状況に特化していない場合でも、様々な生成タスクで適応性と信頼性があることを示しています。結論として、拡散モデルは様々な生成タスクにおいて効果的ですが、画像の変換などの作業には欠点があります。提案されたDDBMsは、拡散ベースの生成と分布変換の手法を組み合わせることで、性能と柔軟性を向上させる革新的かつスケーラブルな解決策を提供します。

ランチェーン 101:パート2d. 人間のフィードバックでLLMの微調整

これは、LangChain 101コースのモデルセクションの2Dパートであり、最後のパートですこの記事の文脈をより理解するために、最初の2つのパートを確認することを強くお勧めしますRLHF...

初心者のためのZenML完全ガイド:MLOpsの簡素化

データサイエンス、機械学習、またはMLOpsに初めて取り組み、ツールの選択肢に圧倒されていますか? ZenMLを考慮してみてください-効率化されたプロダクションパイプラインのためのオーケストレーションツールです。この記事では、ZenMLの機能と特徴について調査し、MLOpsの旅を簡素化します。 学習目標 ZenMLの概念とコマンド ZenMLを使用したパイプラインの作成 メタデータのトラッキング、キャッシング、およびバージョニング パラメータと設定 ZenMLの高度な機能 この記事はData Science Blogathonの一部として公開されました。 まず、ZenMLが何であるか、他のツールとの違い、そしてそれをどのように利用するかを把握しましょう。 ZenMLとは何ですか? ZenMLは、データサイエンティスト、MLエンジニア、およびMLOps開発者向けのオープンソースのMLOps(機械学習オペレーション)フレームワークです。本番用のMLパイプラインの開発におけるコラボレーションを容易にします。 ZenMLは、そのシンプルさ、柔軟性、およびツールに依存しない性質で知られています。 MLワークフローに特化したインターフェースと抽象化を提供し、ユーザーが好みのツールをシームレスに統合し、ユニークな要件に合わせてワークフローをカスタマイズできるようにします。 なぜZenMLを使うべきですか? ZenMLは、データサイエンティスト、MLエンジニア、およびMLOpsエンジニアにいくつかの重要な利点をもたらします: 簡素化されたパイプラインの作成: @stepおよび@pipelineデコレータを使用して簡単にMLパイプラインを構築できます。 容易なメタデータのトラッキングとバージョニング: ZenMLは、パイプライン、実行、コンポーネント、アーティファクトを追跡するユーザーフレンドリーなダッシュボードを提供します。 自動化された展開: ZenMLは、パイプラインとして定義されている場合に自動的に展開することで、モデルの展開を効率化し、カスタムドッカーイメージの必要性を排除します。…

「注意 シンクとキャッシュの配置場所 – ストリーミングLLM実装のビジュアルガイド」

最新のAI論文の一つは、テキストのための効率的で無制限の大きさのコンテキストウィンドウを可能にする、Generative Pre-training Transformer(GPT)モデルアーキテクチャのための技術です

機械学習における公平性(パート1)

機械学習における公平性の基本的概念に深く入り込む:知識豊富なシリーズのパート1

「2/10から8/10までの週のトップの重要なコンピュータビジョン論文」

毎週、いくつかのトップクラスの学術会議やジャーナルでは、画像処理の革新的な研究が披露され、画像のさまざまなサブフィールドでの興奮するようなブレイクスルーが紹介されています...

州は、より多くのコンピューターサイエンスの授業を求めています今は教師が必要です

Code.orgは、2022年までに米国のすべての州がK-12コンピュータサイエンス教育を推進するための法律または政策を導入していると報告しました

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us