Learn more about Search Results ResNet - Page 5

イメージの意味的なセグメンテーションには、密な予測トランスフォーマーを使用します

イントロダクション この記事では、イメージセマンティックセグメンテーションというコンピュータビジョンの技術について説明します。これは複雑な技術のように聞こえますが、ステップバイステップで解説し、Hugging Faceのコレクションから密な予測トランスフォーマー(DPT)を使用したイメージセマンティックセグメンテーションの実装について紹介します。DPTを使用することで、通常とは異なる能力を持つ新しいフェーズのコンピュータビジョンが導入されます。コンピュータビジョンにおけるDPTと従来の遠くのつながりの理解との比較 学習目標 DPTと従来の遠くのつながりの理解の比較 PythonでDPTを使用したセマンティックセグメンテーションの実装 DPTの設計を探索し、その特徴を理解する この記事はデータサイエンスブログマラソンの一環として公開されました。 イメージセマンティックセグメンテーションとは何ですか? イメージセマンティックセグメンテーションとは、画像を持っており、それぞれのピクセルをそれが表す内容に応じてラベル付けしたいというアイデアです。これはコンピュータビジョンで使用され、車と木を区別したり、画像の一部を分離したりするために使用されます。つまり、ピクセルにスマートにラベルを付けることに関わります。しかし、本当の挑戦は、コンテキストとオブジェクト間の関係を理解することにあります。これを従来の画像処理の手法と比較してみましょう。 畳み込みニューラルネットワーク(CNN) 最初のブレイクスルーは、画像を処理するために畳み込みニューラルネットワーク(CNN)を使用することでした。しかし、CNNには限界があり、特に画像の遠くのつながりを捉えることに苦労します。画像内の異なる要素が長い距離でどのように相互作用するのかを理解しようとする場合を想像してみてください。それが従来のCNNの苦手なところです。そこで、DPTを導入します。これらのモデルは、強力なトランスフォーマーアーキテクチャに基づいており、関連性を捉える能力を持っています。次にDPTについて見てみましょう。 デンス予測トランスフォーマー(DPT)とは何ですか? この概念を理解するために、以前のNLPのタスクで使用していたトランスフォーマーの力を画像解析と組み合わせることを考えてみてください。それがデンス予測トランスフォーマー(DPT)のコンセプトです。それはまるで画像のスーパーディテクティブのようです。彼らは画像のピクセルにラベルを付けるだけでなく、各ピクセルの深さを予測する能力を持っています。これにより、各オブジェクトが画像からどれだけ遠くにあるかの情報が提供されます。以下で詳しく見ていきましょう。 DPTアーキテクチャのツールボックス DPTには異なるタイプがあり、それぞれに「エンコーダ」レイヤーと「デコーダ」レイヤーがあります。ここでは、2つの人気のあるタイプについて見てみましょう: DPT-Swin-Transformer:エンコーダレイヤーが10つ、デコーダレイヤーが5つある、メガトランスフォーマーのようなものです。画像内の要素間の関係を理解するのに優れています。 DPT-ResNet:18つのエンコーダレイヤーと5つのデコーダレイヤーを持つ、賢明なディテクティブのようなものです。遠くのオブジェクト間の関連性を見つけることに秀でていますが、画像の空間的な構造を保持します。 主な特徴 DPTがどのように機能するか、いくつかの主な特徴を見てみましょう: 階層的特徴抽出:従来の畳み込みニューラルネットワーク(CNN)と同様に、DPTは入力画像から特徴を抽出します。ただし、画像は異なる詳細レベルに分割される階層的なアプローチを取っています。この階層的なアプローチにより、ローカルとグローバルなコンテキストの両方を捉えることができ、モデルがさまざまなスケールでオブジェクト間の関係を理解することができます。 セルフアテンションメカニズム:これはDPTのバックボーンであり、元々のトランスフォーマーアーキテクチャから着想を得ています。画像内の長い距離の依存関係を捉え、ピクセル間の複雑な関係を学ぶことができるようにします。各ピクセルは他のすべてのピクセルからの情報を考慮し、モデルに画像の包括的な理解を与えます。 DPTを使用した画像セマンティックセグメンテーションのPythonデモ 以下にDPTの実装例を見ていきます。まずは、Colabに事前にインストールされていないライブラリのセットアップを行います。このコードはこちらまたはhttps://github.com/inuwamobarak/semantic-segmentationで見つけることができます。…

「もし私たちが複雑過ぎるモデルを簡単に説明できるとしたらどうだろう?」

この記事は次の記事に基づいています:https//www.sciencedirect.com/science/article/abs/pii/S0377221723006598 これを読んでいるのであれば、人工知能(AI)がいかに重要かご存知かもしれません...

「DINO — コンピュータビジョンのための基盤モデル」

「コンピュータビジョンにとっては、エキサイティングな10年です自然言語の分野での大成功がビジョンの領域にも移されており、ViT(ビジョントランスフォーマー)の導入などが含まれています...」(Konpyūta bijon ni totte wa, ekisaitinguna jūnen desu. Shizen gengo no bunya de no daiseikō ga bijon no ryōiki ni mo utsusarete ori, ViT…

「オープンソースモデルと商用AI/ML APIの違い」

「最近数ヶ月間、おそらく多くの議論に遭遇したことでしょうそれは、大規模言語モデル(LLM)に対してオープンソースのAPIを使うべきか、商用のAPIを使うべきかというものですしかし、これは特定のものではありません…」

物体検出リーダーボード

リーダーボードとモデルの評価の世界へようこそ。前回の投稿では、大規模言語モデルの評価について説明しました。今日は、異なるが同じくらい挑戦的な領域、つまり物体検出に乗り出します。 最近、オブジェクト検出のリーダーボードをリリースしました。このリーダーボードでは、ハブで利用可能な物体検出モデルをいくつかのメトリックに基づいてランキングしています。このブログでは、モデルの評価方法を実証し、物体検出で使用される一般的なメトリック、Intersection over Union (IoU)、Average Precision (AP)、Average Recall (AR)の謎を解き明かします。さらに重要なことは、評価中に発生する可能性のある相違点や落とし穴に焦点を当て、モデルのパフォーマンスを批判的に理解し評価できる知識を身につけることです。 すべての開発者や研究者は、正確に物体を検出し区別できるモデルを目指しています。私たちのオブジェクト検出リーダーボードは、彼らのアプリケーションのニーズに最も適したオープンソースモデルを見つけるための正しい場所です。しかし、「正確」とはこの文脈では本当に何を意味するのでしょうか?どのメトリックを信頼すべきでしょうか?それらはどのように計算されるのでしょうか?そして、さらに重要なことは、なぜいくつかのモデルが異なるレポートで相違した結果を示すことがあるのかということです。これらのすべての質問にこのブログで答えます。 では、一緒にこの探求の旅に乗り出し、オブジェクト検出リーダーボードの秘密を解き明かしましょう!もしも紹介を飛ばして、物体検出メトリックの計算方法を学びたい場合は、メトリックセクションに移動してください。オブジェクト検出リーダーボードを基に最良のモデルを選ぶ方法を知りたい場合は、オブジェクト検出リーダーボードセクションを確認してください。 目次 はじめに 物体検出とは メトリック 平均適合率(Average Precision)とは、どのように計算されるのか? 平均再現率(Average Recall)とは、どのように計算されるのか? 平均適合率と平均再現率のバリエーションとは? オブジェクト検出リーダーボード メトリックに基づいて最適なモデルを選ぶ方法は? 平均適合率の結果に影響を与えるパラメータは? 結論…

「人物再識別入門」

「人物再識別」は、異なる非重複カメラビューに現れる個人を識別するプロセスですこのプロセスは、顔認識に頼らずに、服装を考慮します...

Fast.AIディープラーニングコースからの7つの教訓

「最近、Fast.AIのPractical Deep Learning Courseを修了しましたこれまでに多くの機械学習コースを受講してきましたので、比較することができますこのコースは間違いなく最も実践的でインスピレーションを受けるものの一つですですので…」

BYOL(Bootstrap Your Own Latent)— コントラスティブな自己教示学習の代替手段

『今日の論文分析では、BYOL(Bootstrap Your Own Latent)の背後にある論文に詳しく触れますこれは、対比的な自己教師あり学習技術の代替手法を提供します...』

「セマンティックカーネルへのPythonistaのイントロ」

ChatGPTのリリース以来、大規模言語モデル(LLM)は産業界とメディアの両方で非常に注目されており、これによりLLMを活用しようとする前例のない需要が生まれました...

「埋め込みを使った10の素敵なこと!【パート1】」

「クラシックな機械学習(ML)から一歩踏み出して、埋め込みはほとんどのディープラーニング(DL)のユースケースの中核ですこの概念を理解することで、柔軟なタスクを実行することができます」

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us