Learn more about Search Results ROI - Page 5

小売業の革新:AIが顧客体験、在庫管理、マーケティングに与える影響

人工知能が小売業界に革命を起こし、マーケティング戦略を向上させ、在庫管理を効率化し、顧客の体験を向上させている方法を発見しましょう小売業におけるAIの台頭を探り、データに基づく意思決定に与える影響や今後のトレンドについて考察してみましょう

インターネット上のトップ8逆電話検索ツール

想像してみてください匿名の電話を受けたり、一度も絶えずイタズラされたりするという状況があるとします詐欺の電話もたくさんあり、さまざまな不正な計画に巻き込まれる可能性もありますこれらの状況では、電話の背後にいる人物を特定することが、自己防衛のための正しい手段を提供し、彼らの行為を止めることができますインターネット上でのトップ8の逆引き電話検索ツールについて詳しくご紹介します詳細はこちらをご覧ください

「PythonとSimpleITKを使用した3D医療画像データの処理方法」

日々、医療画像の問題に取り組んでいますこれにより、医療画像が持つさまざまな形式に対処することになりますこの記事では、常に扱っている3つのファイル形式について説明します私は...

AdCreative.aiレビュー:広告のための最高のAIマーケティングツールは?

「広告に最適なAIマーケティングツールを探していますか?AdCreative.aiのレビューをチェックして、その特徴、利点、パフォーマンスについての洞察を得てください」

「エンタープライズAIの堀はRAG +ファインチューニングです- これが理由です」

LLM(リライト・マニュピュレイション・リモデル)に対する話題は前例のないものですが、それには理由がありますAIによるバレンシアガで身を包んだポープのイメージや、鼓動のないカスタマーサポートエージェントなど、生成AIには…

「PyMC-Marketingによる顧客のライフタイムバリュー予測」

要約:顧客生涯価値(CLV)モデルは、顧客分析において価値のある顧客を特定するための重要な技術ですCLVを無視すると、過剰な投資が生じる可能性があります...

モデルアーキテクチャのための生成AIに向けて

「Attention is All You Need」というトランスフォーマー革命は、深層学習モデルのアーキテクチャの設計に深い影響を与えましたBERTが登場して間もなく、RoBERTa、ALBERT、DistilBERTが続きました...

「データストーリーテリングとアナリティクスにおける生成AIのインパクトの公開」

導入 データ分析の広大な領域の中で、ゲネラティブ人工知能(GAI)はゲームを変える最も重要な進展の一つです。これは、歴史的データに基づいて単に処理し予測するだけでなく、新たなものを創り、データストーリーテリングと分析プロセスを革新する時代です。最近のセッションで、この技術の基礎、アーキテクチャ、そして潜在的な影響を探求する機会がありました。以下は、私たちが取り上げた内容を簡潔にまとめたものです。 学習目標: ゲネラティブAIの基礎を理解する。 ゲネラティブAIを用いたさまざまなデータストーリーテリングの技術を学ぶ。 ゲネラティブAIをデータ分析で倫理的に実装することを認識する。 ゲネラティブAIの理解 ゲネラティブAIは、新しいコンテンツを作成することに焦点を当てた人工知能の一部です。従来のAIは歴史的データに基づいて推論や予測を行います。一方、ゲネラティブAIは視覚的、音声的、テキストの創造を含む新しいコンテンツを合成します。ゲネラティブAIのいくつかのアーキテクチャには、生成的対抗ネットワーク(GAN)、変分オートエンコーダ(VAE)、自己回帰モデルまたはトランスフォーマーなどがあります。 GANは、ジェネレータと識別器の2つのニューラルネットワークを使用し、共同でトレーニングします。この対立的なプロセスにより、本物のデータに酷似したデータを生成しながら、本物と生成されたデータを識別します。VAEは少し異なりますが、同じ生成的な目的を果たします。 今日のAIモデルで最も一般的に見られるのは、トランスフォーマーに基づいたChatGPTなどの自己回帰モデルです。これらのモデルは、前の要素に基づいてデータを順次に生成し、次のシーケンス要素を予測することができます。これらのモデルを理解することは、効果的にAIを活用するための戦略的な優位性を提供します。 データストーリーテリング:ゲネラティブAIと分析の結びつき データ分析の影響力はデータストーリーテリングにあります。最初の段階では、データの定義、収集、クリーニング、分析に焦点が当てられますが、骨子はプレゼンテーションの段階にあります。ここで、私たちは効果的に研究結果を伝える必要があります。物語性を作り、ビジュアルを準備し、論理を検証することがストーリーテリングにおいて重要な役割を果たします。ゲネラティブAIを使用することで、このプロセスの一部と二部を大きく影響することができます。 ここで物語性が登場します。データプレゼンテーションにおける物語性は、ステークホルダーとの連携、彼らのニーズを理解し、意思決定を促進するために分析結果を提示することを含みます。しかし、このフェーズは分析のコースではしばしば重要視されないことがありますが、データの影響を伝える上で極めて重要です。 事例研究:ゲネラティブAIによるビジネス効率のストーリーテリング この事例研究は、特にGPT-4がアナリストにプレゼンテーションの目的と役割の明確化を支援する方法を示しています。ChatGPTに「レイオフせずに戦略的に運営コストを削減する方法は?」などと具体的な質問をすることで、AIの提案を活用して物語性とプレゼンテーション戦略を調整することができます。 ゲネラティブAIはコンテンツを完全に作成するのではなく、ブレインストーミングのパートナーとして機能し、方向性とアイデアを提供し、アナリストが自身の戦略を微調整できるようにします。以下は、ビジネスの効率を推進するデータ分析とストーリーテリングにおいてゲネラティブAIがどのように役立つかを示しています。 GPT-4による高度なデータ分析 GPT-4の高度な機能は、無限の可能性を開放します。私の経験では、信頼性と精度により、ChatGPTを使用することを選択しました。LlaMAなどの代替のAIモデルもありますが、それぞれ独自の強みがあります。私はChatGPTを確固たる選択肢と考えていますが、他のモデルも同様に異なる要件に適している可能性があります。 AIとプロトタイプ速度による過剰支出の評価 過剰支出に取り組む際、AIは分析を非常に迅速にプロトタイプ化します。PythonやSQLなどでも同じタスクを実行できますが、AIはプロセスを大幅に加速し、迅速なプロトタイプ作成を可能にします。ただし、結果の正確性に対する責任を考慮し、すべての出力を徹底的に検証してレビューする必要があります。 ChatGPTによるROIの分析と戦略的な削減の作成 投資利益率(ROI)の決定には特定の計算方法が必要です。私はさまざまな費用領域のROI計算方法をChatGPTに指示しました。それによって興味深い状況が明らかになりました。一部のセクターは著しい過剰支出を示していますが、それでも優れたROIをもたらしており、過剰支出にもかかわらず効率的であることを示唆しています。これは戦略的な評価を行い、削減の可能性のある領域を特定する必要があります。 生成AIと視覚的なデータ表現 チャートやグラフなどのAIによって生成された視覚的な表現は、迅速な探索的データ分析を促進する上で重要な役割を果たしています。それらはより深い戦略的思考の出発点を提供します。ただし、選択した視覚的表現が正確なデータの解釈ニーズと一致しているかどうかを評価することが重要です。…

このAI研究は、単一の画像を探索可能な3Dシーンに変換する、パノラマニックNeRF(PERF)を紹介します

NeRFは、2D画像から3Dシーンの再構築と視点合成を行うためのディープラーニング技術です。正確な3D表現を構築するには、通常、複数の画像やシーンのビューが必要です。NeRFは、異なる視点から撮影されたシーンの一連の画像を使用します。NeRFには、NeRF-Wなどの拡張や改良があり、より効率的で正確、さまざまなシナリオ、ダイナミックなシーン、リアルタイムのアプリケーションにも適用可能にすることを目指しています。その派生物は、コンピュータビジョン、コンピュータグラフィックス、3Dシーンの再構築の分野に大きな影響を与えました。 ただし、単一の画像があり、3Dの先行知識を組み込みたい場合、3D再構築の品質を向上させる必要があります。現在の技術は視野を制限するため、実世界の360度パノラマシナリオで大きなサイズを持つスケーラビリティを大幅に制限しています。研究者たちは、PERFと呼ばれる360度新規ビュー合成フレームワークを提案しています。Panoramic Neural Radiance field(パノラミックニューラルラディエンスフィールド)の略称です。彼らのフレームワークは、単一のパノラマからパノラミックニューラルラディエンスフィールドをトレーニングします。 パノラマイメージは、複数の画像を取り込んで、しばしば順番に撮影し、それらを縫い合わせて風景、都市景観、または他のシーンの無接続で広角の表現を形成することによって作成されます。研究チームは、訓練済みのStable Diffusion for RGB inpaintingを使用して、可視領域のRGBイメージと深度マップを補完するための共同RGBD inpainting手法を提案しています。また、入力パノラマからは見えない新しい外観と3D形状を生成するためのモノキュラーデプスエスティメータも訓練しました。 単一のパノラマからパノラミックニューラルラディエンスフィールド(NeRF)をトレーニングすることは、3D情報の欠如、大型オブジェクトの遮蔽、再構築と生成の関連問題、そしてインペイント中の可視領域と不可視領域の間のジオメトリの競合という課題に直面しています。これらの問題に対処するために、PERFは次の三つのステップから成り立っています:1)デプススーパビジョンによる単一ビューNeRFトレーニングの取得;2)ROIのRGBD inpaintingの共同作業;3)プログレッシブなインペイントとイレースのジェネレーションの使用。 ROIの予測されたデプスマップを最適化し、全体的なパノラマシーンと一貫性を持たせるために、彼らはインペイントとイレースの手法を提案しています。この手法では、不可視領域をランダムな視点からインペイントし、他の参照ビューから観測されるジオメトリの競合領域を消去することで、より良い3Dシーン補完を実現します。 研究者たちはReplicaデータセットとPERF-in-the-wildデータセットで実験を行いました。PERFは、新たなシングルビューパノラミックニューラルラディエンスフィールドの最新の状態であることを示しています。彼らはPERFがパノラマから3D、テキストから3D、3Dシーンのスタイル化のタスクに応用でき、いくつかの有望なアプリケーションで驚くべき結果が得られると述べています。 PERFはシングルショットNeRFの性能を大幅に向上させますが、デプスエスティメータとStable Diffusionの正確性に大きく依存します。したがって、チームは将来的な取り組みとして、デプスエスティメータと安定したディフュージョンモデルの正確性を向上させると述べています。

ブレイブがLeoを紹介:ウェブページやビデオのリアルタイム要約を含むさまざまなタスクをサポートする人工知能アシスタント

利用者のプライバシーと正確なAIインタラクションに向けた大きな進歩として、名高いブラウザ開発者であるBraveが、デスクトップ版1.6のリリースと共に、その< a href=”https://www.voagi.com/create-chat-assistant-for-pdfs-and-articles-without-openai-key.html”>ネイティブAIアシスタント、レオを公開しました。その基盤モデルとして、Meta Llama 2の動力を使っているレオは、訪れたウェブページのコンテンツに基づいて利用者のクエリに応答し、AI生成コンテンツに関連する懸念事項を効果的に解決します。 今年初めにリリースされたBrave検索AIサマライザーの拡張機能であるレオは、検索バーから直接アクセスできます。8月のテストフェーズでは、Nightlyチャンネル(バージョン1.59)を通じて、数万人の開発者と利用者がブラウザとレオをダウンロードして評価し、その結果、レオは正式にBraveバージョン1.60に統合されました。 レオの特徴の一つは、利用者のプライバシーに対する取り組みです。他のチャットボットとは異なり、レオは会話を収集せず、利用者を追跡せず、無意味に反応を生成しません。代わりに、正確で関連性の高い情報を提供するために、ウェブコンテンツにのみ依存しています。 レオの無料版は、高度にセキュアなLlama 2モデルをベースにしています。これは、Metaのオープンソースモデルの特殊バリエーションです。しかしながら、Braveはレオプレミアムという有料サービスも導入しており、月額$15で提供されています。レオプレミアムには、論理的な推論とコード作成を重視したAnthropicが開発したClaude Instantモデルが搭載されています。このモデルは、より構造化された応答、指示の実行能力の向上、数学、プログラミング、多言語対応、質疑応答インタラクションの改善などを提供します。 Braveは、回答の正確さをさらに向上させるために、Anthropicのテクノロジーを統合し、Braveの検索APIを活用して最新のClaude 2モデルを訓練しています。このアプローチにより、Claude製品は検索支援生成(RAG)を達成し、より正確な回答を提供し、生成AIの幻想的傾向を抑えることができます。 安全性とプライバシーの面では、Braveは広範な対策を講じています。無料版では、レオの会話は匿名でプライベートに保たれ、対話の記録は行われません。データはモデルの訓練に使用されず、アカウントやログインは必要ありません。逆プロキシ技術により、すべての通話が匿名サーバーを経由するため、Braveは通話と利用者のIPアドレスとの関連を確立することはありません。 レオのプレミアム版を選択した利用者には、登録時にリンクできないトークンが発行され、購読の検証プロセスが保護されます。これにより、Braveは利用活動とユーザーの購入情報をリンクすることができず、完全なプライバシーが確保されます。さらに、利用者のEメールは購読の検証にのみ使用され、追跡されることはありません。 今後、Braveはプレミアム版に追加のモデルを導入する予定です。ネットワークの速度制限、対話の品質、購読者向けの独占特典なども改善されます。 現在は、Brave 1.6のデスクトップ版で利用できるレオとレオプレミアムは、今後数ヶ月でAndroidとiOSプラットフォームにも展開されます。この革新的な開発は、ブラウザ技術とAI統合の重要な進歩を示し、Braveの利用者志向およびプライバシー重視のイノベーションに対する取り組みを再確認します。 The post Braveがレオを紹介:ウェブページやビデオのリアルタイム要約など、さまざまなタスクをサポートする人工知能アシスタント appeared first on MarkTechPost。

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us