Learn more about Search Results Markdown - Page 5

Gradio 3.0 がリリースされました!

機械学習デモ 機械学習デモは、モデルのリリースにおいてますます重要な役割を果たしています。デモを使用することで、MLエンジニアに限らず誰でもブラウザ上でモデルを試し、予測にフィードバックを提供し、モデルがうまく機能する場合にはモデルへの信頼を築くことができます。 2019年の初版以来、Gradioライブラリを使用して600,000以上のMLデモが作成されています。そして今日、私たちはうれしいことに、Gradio 3.0の発表をお知らせできます!Gradioライブラリの完全な再設計です🥳 Gradio 3.0の新機能 🔥 Gradioユーザーからのフィードバックに基づいた、フロントエンドの完全な再設計: Gradioフロントエンドの構築には、Svelteなどの最新技術を使用しています。その結果、ペイロードが非常に小さく、ページの読み込みも非常に高速になりました! また、よりクリーンなデザインにも取り組んでおり、Gradioデモが視覚的により多くの設定に適合するようになりました(ブログ記事に埋め込まれるなど)。 CSVファイルをドラッグアンドドロップしてDataframeに入力するなど、既存のコンポーネントであるDataframeをよりユーザーフレンドリーに改良し、Galleryなどの新しいコンポーネントを追加して、モデルに適したUIを構築できるようにしました。 新たにTabbedInterfaceクラスを追加しました。これにより、関連するデモを1つのWebアプリケーション内の複数のタブとしてグループ化することができます。 すべての使用可能なコンポーネントについては、(再設計された)ドキュメントをご覧ください🤗! 🔥 Pythonで複雑なカスタムWebアプリを構築できる新しい低レベル言語Gradio Blocksを作成しました: なぜBlocksを作成したのでしょうか?Gradioデモは非常に簡単に構築できますが、デモのレイアウトやデータのフローに対してより細かい制御をしたい場合はどうでしょうか?たとえば、以下のようなことができるようになります: 入力を左側にまとめ、出力を右側にまとめるデモのレイアウトを変更する 1つのモデルの出力を次のモデルの入力とするような、マルチステップのインターフェースを持つか、一般的にはより柔軟なデータフローを持つ ユーザーの入力に基づいてコンポーネントのプロパティ(例:ドロップダウンの選択肢)や表示状態を変更する 低レベルのBlocks APIを使用すると、すべての操作をPythonで実行できます。 次に、2つのシンプルなデモを作成し、タブを使用してそれらをグループ化するBlocksデモの例を示します: import…

Hugging Face Spacesでタンパク質を可視化する

この投稿では、Hugging Face Spacesでタンパク質を可視化する方法について見ていきます。 動機 🤗 タンパク質は、医薬品から洗剤まで私たちの生活に大きな影響を与えています。タンパク質の機械学習は、新しい興味深いタンパク質の設計を支援するための急速に成長している分野です。タンパク質は、主にアミノ酸と呼ばれる一連の構成要素を3D空間に配列して、タンパク質の機能を与える複雑な3Dオブジェクトです。機械学習の目的で、タンパク質は、例えば座標、グラフ、またはタンパク質言語モデルで使用するための1次元の文字列として表現することができます。 タンパク質の有名な機械学習モデルの一つにAlphaFold2があります。AlphaFold2は、類似のタンパク質の多重配列と構造モジュールを使用してタンパク質配列の構造を予測します。 AlphaFold2が登場して以来、OmegaFold、OpenFoldなど、さまざまなモデルが登場しました(詳細はこのリストやこのリストを参照)。 見ることは信じること タンパク質の構造は、タンパク質の機能を理解する上で重要な要素です。現在、mol*や3dmol.jsなどのブラウザで直接タンパク質を可視化するためのツールがいくつか利用可能です。この投稿では、3Dmol.jsとHTMLブロックを使用して、Hugging Face Spaceに構造可視化を統合する方法を学びます。 必要条件 すでにgradio Pythonパッケージがインストールされていること、およびJavascript / JQueryの基本的な知識を持っていることを確認してください。 コードの概要 3Dmol.jsのセットアップ方法に入る前に、インターフェースの最小機能デモを作成する方法を見てみましょう。 以下のコードは、4桁のPDBコードまたはPDBファイルを受け入れる簡単なデモアプリを作成します。アプリは、RCSB Protein Databankからpdbファイルを取得して表示するか、アップロードされたファイルを使用して表示します。 import gradio…

StackLLaMA:RLHFを使用してLLaMAをトレーニングするための実践ガイド

ChatGPT、GPT-4、Claudeなどのモデルは、Reinforcement Learning from Human Feedback(RLHF)と呼ばれる手法を使用して、予想される振る舞いにより適合するように微調整された強力な言語モデルです。 このブログ記事では、LlaMaモデルをStack Exchangeの質問に回答するためにRLHFを使用してトレーニングするために関与するすべてのステップを以下の組み合わせで示します: 教師あり微調整(SFT) 報酬/選好モデリング(RM) 人間のフィードバックからの強化学習(RLHF) From InstructGPT paper: Ouyang, Long, et al. “Training language models to follow instructions with human…

Amazon SageMakerのHugging Face LLM推論コンテナをご紹介します

これは、オープンソースのLLM(Large Language Model)であるBLOOMをAmazon SageMakerに展開し、新しいHugging Face LLM Inference Containerを使用して推論を行う方法の例です。Open Assistantデータセットで訓練されたオープンソースのチャットLLMである12B Pythia Open Assistant Modelを展開します。 この例では以下の内容をカバーしています: 開発環境のセットアップ 新しいHugging Face LLM DLCの取得 Open Assistant 12BのAmazon SageMakerへの展開 モデルを使用して推論およびチャットを行う…

MLモデルのトレーニングパイプラインの構築方法

手を挙げてください、もしもあなたがごちゃ混ぜのスクリプトをほどくのに時間を無駄にしたことがあるか、またはそう難解なバグを修正しようとしている間に幽霊を追いかけているような気持ちになったことがあるかそしてその間にモデルの訓練が永遠にかかっているという状況も経験したことがあるかもしれません私たちは皆、そんな経験をしたことがあるはずですよね?でも今、別のシナリオを思い浮かべてくださいきれいなコード効率的なワークフロー効率的なモデルの訓練信じられないほど素晴らしい光景ですよね…

Taipy:ユーザーフレンドリーな本番用データサイエンティストアプリケーションを構築するためのツール

データサイエンティストとして、データの視覚化のためのダッシュボードを作成したり、データを視覚化したり、さらにはビジネスアプリケーションを実装して利害関係者が実行可能な意思決定を行うのをサポートするかもしれません

AIを活用した言語学習アプリの構築:2つのAIチャットからの学習

新しい言語を学び始めるときは、私は「会話ダイアログ」の本を買うのが好きです私はそのような本が非常に役立つと思っていますそれらは、言語がどのように動作するかを理解するのに役立ちます単に…

LlamaIndex インデックスと検索のための究極のLLMフレームワーク

LlamaIndex(以前はGPT Indexとして知られていました)は、データ取り込みを容易にする必須ツールを提供することで、LLMを使用したアプリケーションの構築を支援する注目すべきデータフレームワークです

フロントエンド開発のトレンド

最先端の進歩や最高水準のイノベーションが、現在ウェブ開発の世界を形作っている様子について、私たちと一緒に深く掘り下げてみませんか

データサイエンティストのための10のJupyter Notebookのヒントとトリック

専門家のヒントやテクニックを使ってJupyter Notebookの全ポテンシャルを引き出し、時間を節約するショートカット、強力なマジック関数、高度な機能などを活用して生産性を向上させましょう

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us