Learn more about Search Results LSTM - Page 5
- You may be interested
- 「シエラディビジョンがNVIDIA Omniverse...
- CLIPSegによるゼロショット画像セグメンテ...
- 「ソフトロボットは自分自身を繰り返し膨...
- ギットハブアクションズでのキャッシュ保存
- 「CREATORと出会ってください:ドキュメン...
- 「AIが秘密のメッセージをミームに隠し込...
- 「LLM評価のガイド:設定と重要な指標」
- DataHour ラマインデックス QA システムに...
- 「検索強化生成の力:BaseとRAG LLMs with...
- 哲学とデータサイエンス-データについて深...
- 「光チップはさまざまな機能を実行するた...
- 次世代のコンピューティング:NVIDIAとAMD...
- 「2024年のデータサイエンティストにとっ...
- プリンストン大学の研究者が、MeZOという...
- AIの革新的なイノベーションが開発者を強...
このAIニュースレターは、あなたが必要とするすべてです#65
今週のAIでは、AI規制に関する進展がありましたエロン・マスクやマーク・ザッカーバーグなどのテックリーダーが60人以上の上院議員とAIについて話し合いましたが、彼らは皆同意しました-
「深層学習技術を利用した人工知能(AI)によるADASの向上」
ディープラーニングは、リアルタイムのセンサーデータを使用して、正確な物体検出、衝突予測、および積極的な意思決定を実現するADASを強化します
「ジェネレーティブAI(2024)の10の重要ポイント」
「2023年、生成AIの世界に飛び込み、その応用、影響、そして将来の課題についての洞察を得ましょう」
文の補完のための言語モデル
最近、GPTなどの言語モデルが非常に人気になり、ChatGPTや他の会話型AIシステムなど、さまざまなテキスト生成タスクに使用されていますこれらの言語モデルは...
テキストから音声へ – 大規模な言語モデルのトレーニング
はじめに 音楽家の声コマンドをAIが受け取り、美しいメロディックなギターサウンドに変換する世界を想像してみてください。これはSFではありません。オープンソースコミュニティでの画期的な研究「The Sound of AI」の成果です。本記事では、「テキストからサウンドへ」というジェネレーティブAIギターサウンドの範囲内で、「ミュージシャンの意図認識」のための大規模言語モデル(LLM)の作成の道のりを探求します。このビジョンを実現するために直面した課題と革新的な解決策についても議論します。 学習目標: 「テキストからサウンド」のドメインでの大規模言語モデルの作成における課題と革新的な解決策を理解する。 声コマンドに基づいてギターサウンドを生成するAIモデルの開発において直面する主な課題を探求する。 ChatGPTやQLoRAモデルなどのAIの進歩を活用した将来のアプローチについて、ジェネレーティブAIの改善に関する洞察を得る。 問題の明確化:ミュージシャンの意図認識 問題は、AIが音楽家の声コマンドに基づいてギターサウンドを生成できるようにすることでした。例えば、音楽家が「明るいギターサウンドを出してください」と言った場合、ジェネレーティブAIモデルは明るいギターサウンドを生成する意図を理解する必要があります。これには文脈とドメイン特有の理解が必要であり、一般的な言語では「明るい」という言葉には異なる意味がありますが、音楽のドメインでは特定の音色の品質を表します。 データセットの課題と解決策 大規模言語モデルのトレーニングには、モデルの入力と望ましい出力に一致するデータセットが必要です。ミュージシャンのコマンドを理解し、適切なギターサウンドで応答するために、適切なデータセットを見つける際にいくつかの問題が発生しました。以下に、これらの問題の対処方法を示します。 課題1:ギターミュージックドメインのデータセットの準備 最初の大きな課題は、ギターミュージックに特化したデータセットが容易に入手できないことでした。これを克服するために、チームは独自のデータセットを作成する必要がありました。このデータセットには、音楽家がギターサウンドについて話し合う会話が含まれる必要がありました。Redditの議論などのソースを利用しましたが、データプールを拡大する必要があると判断しました。データ拡張、BiLSTMディープラーニングモデルの使用、コンテキストベースの拡張データセットの生成などの技術を使用しました。 課題2:データの注釈付けとラベル付きデータセットの作成 2番目の課題は、データの注釈付けを行い、ラベル付きのデータセットを作成することでした。ChatGPTなどの大規模言語モデルは一般的なデータセットでトレーニングされることが多く、ドメイン固有のタスクに対してファインチューニングが必要です。例えば、「明るい」という言葉は、光や音楽の品質を指す場合があります。チームは、正しい文脈をモデルに教えるために、Doccanoという注釈付けツールを使用しました。ミュージシャンは楽器や音色の品質に関するラベルをデータに注釈付けしました。ドメインの専門知識が必要であるため、注釈付けは困難でしたが、チームはデータを自動的にラベル付けするためにアクティブラーニングの手法を一部適用し、これに対処しました。 課題3:MLタスクとしてのモデリング – NERアプローチ 適切なモデリングアプローチを決定することもまた、別のハードルでした。トピックまたはエンティティの識別として見るべきでしょうか?チームは、モデルが音楽に関連するエンティティを識別して抽出できるNamed Entity Recognition(NER)を採用しました。spaCyの自然言語処理パイプライン、HuggingFaceのRoBERTaなどのトランスフォーマーモデルを活用しました。このアプローチにより、ジェネレーティブAIは音楽のドメインにおける「明るい」や「ギター」といった単語の文脈を認識できるようになりました。 モデルトレーニングの課題と解決策…
ディープラーニングを使用した自動音楽生成
歴史的に、音楽は人間の芸術的な努力の強力な指標として機能してきました。現在、伝統的な音楽の構築と計算手法の融合は特に明白です。高度なアルゴリズムと広範なニューラルネットワークによるディープラーニングは、音楽作曲の分野で有力なツールとして浮上しています。このアプローチは、旋律やハーモニーの生成を自動化するだけでなく、人間の音楽的な洞察力と計算的な厳密さの統合を表しています。 研究コミュニティでは、自動音楽生成のためのいくつかの手法が提案されています。従来の技術では、事前に定義されたアルゴリズムを利用し、RNNやその高度な派生であるLSTMなどの自律モデルは、過去の音符から新しい音符を生成するために学習します。また、Generative Adversarial Networks (GANs)という革新的なアプローチでは、2つのニューラルネットワークが協力して音楽データを比較・生成します。Google DeepMindが導入したWaveNetは、生のオーディオ波形を処理することで独自の視点を提供しています。これらの進歩にもかかわらず、技術的な正確さと聴覚的な魅力を兼ね備えた音楽を作り出すという課題が残されています。 この文脈において、インドの研究チームが最近の論文で、人々が本当に楽しむことができる音楽を作り出すことを目指しています。彼らは、プロフェッショナルなレベルの作曲ではなく、まともでメロディアスで持続性があり、耳に心地よいメロディを作り出すことを重視した新しいアプローチを強調しています。 具体的には、研究チームは、マルチレイヤーLSTMモデルに基づく手法を提案し、効率的なASCII音楽表現であるABC記法に焦点を当てました。この手法では、2つの楽器と5人の作曲家からの曲を組み合わせたデータセットを、整数エンコーディングおよびワンホットエンコーディングの技術を用いて処理します。アーキテクチャでは、LSTMがバックボーンとして機能し、過学習を抑制するためにドロップアウト層が補完され、タイムステップの出力を処理するためにタイムディストリビュートドデンス層が使用されます。さらに、アーキテクチャではSoftMax分類器が音符ごとの確率を生成し、学習プロセスを改善するためにAdaptive Moment Estimation (Adam)オプティマイザが使用されます。トレーニング後、LSTMはこれらの確率を反復的に使用して新しい音楽のシーケンスを生成します。 提案手法の効果を評価するために、モデルは150エポックでトレーニングされ、95%のトレーニング精度を達成しました。進行に伴い、初期の20エポックでは73%からの著しい精度向上が見られ、40エポック以降からは顕著な改善がみられました。モデルの出力に対して詳細な音楽分析が行われました。自己相関によって一貫したパターンが特定され、音楽には構造的な繰り返しがあることが示唆されました。パワースペクトル密度(PSD)は、特定の周波数範囲で支配的な変動を強調し、生成された音楽はリラックスした565.38 Hzの周波数を持っていました。ノイズ削減技術として、Butterworthローパスフィルタを使用することでノイズの干渉を効果的に最小化し、高品質な音楽出力を確保しました。指標と分析に基づいて、モデルの性能は非常に優れており、ノイズを最小限に抑えた品質の高い構造化された音楽を生成しました。 まとめると、著者らはマルチレイヤーLSTMネットワークを用いて、自律的にメロディアスな音楽を作曲するモデルを成功裏に開発しました。このモデルは、以前のデータセットの詳細を思い出すことができるため、印象的な95%の正確性で多声音楽を生成することができます。この研究は、音楽生成におけるディープラーニングの潜在能力とその個人への影響を強調しています。将来の取り組みには、オーディオパターン分析を通じて音楽の感情的なニュアンスを予測するための高度な技術を組み込むことが挙げられます。これにより、音楽生成技術が日常生活にシームレスに組み込まれ、AIと人間の相互作用を洗練させることが目指されます。
「最終年度のデータサイエンスの学生向けの5つのポートフォリオプロジェクト」
データのクリーニングからリクルーターを驚かせるまで - このブログでは、データサイエンスのキャリアをスタートさせ、採用されるための5つの優れたデータサイエンスプロジェクトを共有しています!
「RecMindと出会ってください:推薦タスクのための推論、行動、およびメモリを組み合わせた大規模言語モデル技術によって駆動される自律型の推薦エージェント」
人工知能とディープラーニングの人気が高まるにつれて、ほぼすべてのアプリケーションがAIの能力を利用して作業を進めています。DNN(深層ニューラルネットワーク)は、推薦システムの近代化に不可欠な存在となっています。推薦システムは、検索エンジン、ECサイト、ソーシャルメディアネットワーク、映画や音楽のストリーミングサービスなど、多くのオンラインプラットフォームで重要な役割を果たしています。その主な役割は、ユーザーが過去にプラットフォーム上でどのように製品を利用し、相互作用してきたかを調べ、その情報をもとに、ユーザーが将来的に相互作用する可能性のある製品を提案することです。これにより、ユーザーの関与と体験が向上します。 過去には、推薦システムはさまざまなアルゴリズムや手法を利用してきましたが、最近ではディープニューラルネットワーク(DNN)の導入により、その性能が大幅に向上しました。DNNは、人々や物事、連続的なユーザーの行動の複雑な表現やパターンを把握するのに優れています。この発展により、推薦はより正確で個別化されるようになりましたが、まだ特定の制限があります。特に、CNN(畳み込みニューラルネットワーク)、LSTM(長短期記憶)、BERTなど、DNNを利用して構築された既存の推薦システムの多くは、ユーザーやアイテムに関するテキストデータを効率的に取得するための支援が必要です。さらに、推薦タスクに特化したRS技術の多くは、他の未知の推薦タスクにうまく適用できない可能性があります。 これらの課題に対処するため、研究者チームが、大規模言語モデル技術に基づく自律推薦エージェント「RecMind」を紹介しました。このエージェントは、戦略的な計画、知識の取得のための外部ツール、個別化されたデータを活用して、正確なパーソナライズされた推薦を行うことに優れています。RecMindで導入された主要なイノベーションの1つは、自己インスパイアリングアルゴリズムです。このアルゴリズムは、LLMベースのエージェントの計画能力を向上させるために設計されています。LLMは、中間的な計画フェーズごとにこのアプローチを使用して次の計画手段を決定する際に、これまでに探索されたすべての状態を考慮に入れるため、自動的に「自己インスパイア」します。この方法により、モデルは推薦を形成する際に、過去の計画データを効率的に把握し利用する能力が大幅に向上します。LLMを利用した推薦システムの領域において、この自己インスパイアリング機能は重要な発展です。 RecMindの効果は、評価されたシナリオの範囲内で徹底的に評価されており、以下のようになります。 評価予測 – 特定のものを消費者がどのように評価するかを予測します。 順次推薦 – ユーザーの好みに基づいて特定の順序で商品を推薦します。 直接推薦 – ユーザーに直接アイテムを推薦します。 説明生成 – 特定の推薦の理由を説明します。 レビュー要約 – 特定の製品に関するユーザーコメントをまとめます。 評価結果によれば、チームは、RecMindがさまざまなタスクベースの推薦において、現在のゼロ・フューショットLLMベースの推薦技術を凌駕していることを共有しています。このモデルは、推薦タスクに特化した徹底的な事前トレーニング手順を必要とするモデル「P5」を凌駕しています。 以下に、主な貢献をまとめます。 この研究は、LLMを活用した自律推薦エージェントの開発を先駆けて行っています。RecMindは、推薦タスクに対して推論、行動、メモリを統合したエージェントフレームワークです。 複数の推論パスを統合することで、チェーンオブソウツやツリーオブソウツなどの人気のある手法を上回る、自己インスパイアリングの計画技術が提案されました。 RecMindの効果は、推薦シナリオの5つの場面で評価され、驚くべき結果を示しました。
このAI論文は、さまざまなディープラーニングと機械学習のアルゴリズムを用いた行動および生理学的スマートフォン認証の人気のあるダイナミクスとそのパフォーマンスを識別します
年月が経つにつれて、モバイルデバイスは機能性と人気の面で大きな進化を遂げてきましたが、セキュリティ対策はそれに追いついていません。スマートフォンには今や大量の機密情報が含まれており、セキュリティは切迫した問題となっています。研究者たちは、モバイルデバイスのセキュリティ強化のために行動および生理学的なバイオメトリクスを探求しています。これらの方法は、タイピングパターンや顔の特徴など、ユーザー固有の特性を活用しています。機械学習とディープラーニングのアルゴリズムを組み込むことで、セキュリティの強化に有望な成果が示されています。これらのアプローチを現実のシナリオにおいてモバイルデバイスのセキュリティを向上させるために、さらなる研究が重要です。 この文脈において、アメリカの研究チームによって新しい論文が発表されました。この論文は、モバイルデバイスにおけるセキュリティギャップの拡大に対処するために、行動および生理学的なバイオメトリクスに基づく認証方法がスマートフォンのセキュリティをどのように向上させるかを包括的にレビューすることを目的としています。これは、この分野での以前の研究を基にしており、認証のダイナミクスにおけるトレンドを特定しています。さらに、研究では、ディープラーニングの特徴とディープラーニング/機械学習の分類を組み合わせたハイブリッド方式が、認証のパフォーマンスを大幅に向上させることができることを強調しています。 この研究は、モバイルデバイスのセキュリティの重要な側面について詳しく掘り下げるとともに、次の主要な問いに焦点を当てています。「モバイルデバイスにおける最も効果的な生体認証方法は何であり、これらの生体認証方法にはどの機械学習およびディープラーニングのアルゴリズムが最適ですか?」著者たちは、生体認証の文脈におけるディープラーニング(DL)および機械学習(ML)のアルゴリズムに関する包括的な調査が重要な知見を提供したと結論づけました。彼らは、アルゴリズムの慎重な選択が認証のパフォーマンスに大きく影響することを発見しました。畳み込みニューラルネットワーク(CNN)と再帰型ニューラルネットワーク(RNN)は、生理学的および行動的なダイナミクスの処理においてリーダーとなっています。CNNは、顔や指紋に基づく生体認証などの生理的データの処理に優れており、RNNはキーストロークのダイナミクスにおいて非常に貴重です。サポートベクターマシン(SVM)は、特にタッチ、動き、およびキーストロークのダイナミクスにおける行動的なバイオメトリクスの分類において堅牢な選択肢でした。研究はまた、CNNなどのアルゴリズムを特徴抽出に使用するハイブリッド認証システムの採用の増加にも言及しています。CNN + LSTMによる歩行ダイナミクスやCNN + SVMによる顔認証などのこれらのハイブリッドアプローチは、さまざまなシナリオでの認証パフォーマンスの向上に有望です。 最後に、この論文は、レビューされた研究にいくつかの制約があることも強調しています: 1. 小規模なデータセット:多くの研究は小規模なデータセットを使用しており、特により大きなデータ量を必要とするディープラーニングモデルの品質と一般化能力に支障をきたす可能性があります。 2. セキュリティテストの欠如:多くの研究は、さまざまなセキュリティ攻撃に対するモデルのテストを行っていないため、認証方法が脆弱になる可能性があります。 3. 制約のあるシナリオ:一部の研究は、ユーザーが厳格な指示に従う制約のあるシナリオでデータを収集およびテストしています。これは、人々がデバイスを使用する方法の変動性を考慮していないため、モデルの現実世界での適用可能性を制限する可能性があります。 これらの制約に対処することは、バイオメトリックモバイル認証方法の実用性とセキュリティの向上にとって重要です。 まとめると、この調査はモバイルバイオメトリック認証の包括的な見方を提供しています。特にCNNとRNNのようなディープラーニングアルゴリズムが、行動的および生理学的な認証の両方で効果的であることを強調しています。CNN + SVMのようなハイブリッドモデルは、パフォーマンスの向上に有望です。論文の著者によれば、将来の研究ではDLアルゴリズムに焦点を当て、高品質なデータセットを拡充し、現実的なテストシナリオを確保することが、モバイルバイオメトリック認証の可能性を最大限に活用するために重要です。
プロンプトからテキストを生成するためのモデルの作成
導入 急速に進化するGenerative AIの風景において、新たな時代が訪れました。この変革的なシフトにより、AIアプリケーションに前例のない進歩がもたらされ、その最前線にはChatbotがあります。これらのAIパワードの対話エージェントは、人間のような相互作用をシミュレートし、ビジネスや個人のコミュニケーションを再構築しています。”Gen AI Era”という用語は、先進的なAIが未来を形作る役割を強調しています。”解放された可能性”は、Chatbotがパーソナライズされた体験、効率的な問題解決、創造性を推進する変革期を意味しています。タイトルは、Generation AIによってエンパワーされたChatbotが、新しい対話の時代を切り拓くために、プロンプトからテキストを生成するモデルをゼロから構築する方法を発見することを示唆しています。 本記事では、ChatbotとGen AIの交差点で、プロンプトからテキストを生成することによる深い影響を明らかにしています。Chatbotがコミュニケーションを向上させ、プロセスを効率化し、ユーザーエクスペリエンスを向上させる方法について探求します。この旅は、異なる産業におけるGen AI時代におけるChatbotの潜在能力を解き放ち、その進化、応用、変革力を探求します。最先端のAIイノベーションを通じて、Chatbotがこのダイナミックな人工知能の時代において、対話、作業、つながりを再定義する方法を明らかにします。 学習目標 Gen AI Eraの導入: Generation AI(Gen AI)の概念とその進化する人工知能の風景における重要性を説明して、舞台を設定します。 Chatbotの役割の強調: ChatbotがGen AIの枠組み内で果たす重要な役割を強調し、コミュニケーションと相互作用に与える変革的な影響を示します。 LangChainの洞察の探求: LangChainのブログ投稿「LangChain DemoGPT: Generation AIアプリケーションの新時代を切り拓く」について、ChatbotとGen…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.