Learn more about Search Results Amazon CloudWatch - Page 5
- You may be interested
- Gitタグ:それらは何であり、どのように使...
- スマートインフラストラクチャのリスク評...
- このAIペーパーは、東京大学で深層学習を...
- 「GTFSデータを使用して輸送パターンを数...
- 新しいAI研究が「SWIM-IR」をリリース!28...
- 「ニューヨーク州法案、3Dプリンターの購...
- 「医療分野における生成型AI」
- 新しいSHAPプロット:バイオリンプロット...
- ACIDトランザクションとは何ですか?
- 「AIが非営利団体に持続的な価値を創造す...
- 人間の脳プロジェクトによるマッピングは...
- 「AI Time Journalが「AIにおけるSEOのト...
- 「パインコーンベクトルデータベースの包...
- ジオのHaptikがビジネス向けのAIツールを...
- Pythonによる(Bio)イメージ分析:ヒストグ...
言語の壁を乗り越える シームレスなサポートのためにAmazon Translateでアプリケーションログを翻訳する
この投稿では、アプリケーションログが英語以外の言語で表示される場合に、開発者やサポートチームがデバッグやサポートを行う際に直面する課題について取り上げます提案される解決策は、CloudWatchの非英語ログを自動的にAmazon Translateを使用して翻訳し、解決策を環境に展開するためのステップバイステップのガイダンスを提供します
「Amazon Rekognition、Amazon SageMaker基盤モデル、およびAmazon OpenSearch Serviceを使用した記事のための意味論的画像検索」
デジタルパブリッシャーは、新しいコンテンツをできるだけ迅速に生成し、公開するために、メディアのワークフローを効率化し自動化する方法を常に探していますパブリッシャーは、何百万もの画像を含むリポジトリを持っており、これらの画像を記事間で再利用することで費用を節約する必要がありますこのようなスケールのリポジトリ内で、記事に最も適した画像を見つけることは、時間のかかる繰り返しの手作業であり、自動化することができますまた、リポジトリ内の画像が正しくタグ付けされていることも自動化できます(お客様の成功事例については、Aller Media Finds Success with KeyCore and AWSを参照してください)この記事では、Amazon Rekognition、Amazon SageMaker JumpStart、Amazon OpenSearch Serviceを使用して、このビジネスの問題を解決する方法を示します
「Amazon TextractとAmazon OpenSearchを使用してスマートなドキュメント検索インデックスを実装する」
この投稿では、ドキュメント検索インデックスソリューションを迅速に構築および展開する旅に連れて行きますこのソリューションは、組織がドキュメントから洞察をより効果的に抽出するのを支援します例えば、人事部門では従業員契約の特定の条項を探しているか、財務アナリストでは支払いデータを抽出するために膨大な数の請求書を選別している場合でも、このソリューションは、あなたが必要な情報に前例のない速度と正確さでアクセスできるようにするためにカスタマイズされています
「モデルガバナンスを向上させるために、Amazon SageMaker Model Cardsの共有を利用してください」
MLガバナンスの一環として利用可能なツールの1つは、Amazon SageMaker Model Cardsですこのツールは、モデルのライフサイクル全体での文書化を中央集権化して標準化することにより、モデル情報の真実の一元化を可能にします SageMakerモデルカードにより、モデルの設計、構築、トレーニング、評価など、モデルのライフサイクルを可視化するための標準化が可能になりますモデルカードは、監査や文書化の目的で信頼性のあるビジネスおよび技術メタデータの真実の一元化を意図していますモデルの重要な情報を提供するファクトシートとなります
「Amazon SageMakerでのRayを使用した効果的な負荷分散」
以前の記事(たとえば、ここ)では、DNNトレーニングワークロードのプロファイリングとパフォーマンスの最適化の重要性について詳しく説明しましたディープラーニングモデルのトレーニングは、特に大規模なものは...
「Amazon SageMakerの非同期エンドポイントを使用して、Amazon SageMaker JumpStartの基礎モデルのデプロイコストを最適化する」
この投稿では、これらの状況を対象にし、Amazon SageMaker JumpStartからAmazon SageMaker非同期エンドポイントに大規模な基盤モデルを展開することによって高コストのリスクを解決しますこれにより、アーキテクチャのコストを削減し、リクエストがキューにある場合や短い生存期間のみエンドポイントを実行し、リクエストが待機している場合にはゼロにスケーリングダウンしますこれは多くのユースケースにとって素晴らしいですが、ゼロにスケーリングダウンしたエンドポイントは、推論を提供できる前に冷たいスタート時間を導入します
Amazon SageMaker Model Cardの共有を利用して、モデルのガバナンスを向上させる
MLガバナンスの一環として利用可能なツールの1つは、Amazon SageMaker Model Cardsですこのツールは、モデルのライフサイクル全体でのドキュメントの集中管理と標準化を通じて、モデル情報の真実の単一ソースを作成する能力を持っています SageMakerモデルカードにより、モデルの設計、構築、トレーニング、評価からモデルのライフサイクルを可視化するために、モデルのドキュメント化方法を標準化することができますモデルカードは、監査やドキュメンテーションの目的で信頼性のあるビジネスおよび技術メタデータの真実の単一ソースとなることを目指していますモデルの重要な事実を提供するファクトシートとなります
「HaystackパイプラインとAmazon SageMaker JumpStartを使用して、LLMsを用いたエンタープライズ検索のための本番用ジェネレーティブAIアプリケーションを構築する」
この投稿では、HaystackパイプラインとAmazon SageMaker JumpStartおよびAmazon OpenSearch ServiceからのFalcon-40b-instructモデルを使用して、エンタープライズ検索のためのエンドツーエンドの生成型AIアプリケーションを構築する方法を紹介します
「新しいAmazon Kendra Alfrescoコネクタを使用して、Alfrescoコンテンツをインデックス化します」
「Amazon Kendraは、機械学習(ML)によって推進された非常に正確で使いやすい知的な検索サービスですAmazon Kendraは、コンテンツをインジェストしてインデックス化するプロセスを簡素化するためのデータソースコネクタのスイートを提供しています組織内の貴重なデータは、構造化および非構造化のリポジトリに保存されています企業の検索ソリューションは、[...]」
「Amazon SageMakerを使用して、生成AIを使ってパーソナライズされたアバターを作成する」
生成AIは、エンターテイメント、広告、グラフィックデザインなど、さまざまな産業で創造プロセスを向上させ、加速させるための一般的なツールとなっていますそれにより、観客によりパーソナライズされた体験が可能となり、最終製品の全体的な品質も向上します生成AIの一つの重要な利点は、ユーザーに対してユニークでパーソナライズされた体験を作り出すことです例えば、[…]
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.