Learn more about Search Results ARES - Page 5

AIの革新的なイノベーションが開発者を強化する

SAPは、Build CodeやHANA Cloudなどの複数の生成AI機能を導入し、開発者が迅速にデータから価値を生み出し、革新するのを支援します

ビル・ゲイツが生生成AIの未来に疑問を呈す!

Microsoft共同創設者がGPT-5とAIの景色について洞察を共有 人工知能の絶えず進化する景色の中で、生成型AIは主導的な力となって浮上しています。過去1年間、多くの企業がこの技術に相当な投資を行い、2022年11月にOpenAIによる< a href=”https://www.voagi.com/chatgpt-amazing-yet-overhyped.html”>ChatGPTの大々的なローンチにつながりました。この進展は、変革的なAI駆動の進歩の時代に私たちを前進させるAIセクターにとって画期的な瞬間を刻みました。しかし、億万長者の慈善家であるビル・ゲイツが生成型AIの将来に疑問を投げかけるという興味深い展開があります。 GPTシリーズの革命: これまでの旅 OpenAIのGPTシリーズ(GPTはGenerative Pre-trained Transformerの略)は、業界全体でのAIの進歩の軌道を形作る上で重要な役割を果たしてきました。これらの言語モデルは、チャットボットからコンテンツ生成に至るまで、無数のAIアプリケーションの基盤を築きました。しかし、AIコミュニティはGPT-5を待ち望んでいますが、ビル・ゲイツは生成型AIがピークに達したのではないかという疑問を提起しています。 さらに読む: OpenAIの飛躍:GPT-4 Vision with Visual Superpowersを明らかにする ビル・ゲイツの見解:GPT-5は次の大幅な進歩なのか? MicrosoftがOpenAIの49%の株式を所有しているにもかかわらず、ビル・ゲイツはGPT-5の可能性に懐疑的です。彼は現在の生成型AIの状態が頭打ちに達した可能性があると主張しています。ゲイツは自分が間違っているかもしれないと認めつつも、GPT-2からGPT-4への飛躍を「驚異的」と表現し、OpenAIの一部の人々と意見が異なると述べています。 AIの未来:ビル・ゲイツの予測 ビル・ゲイツは、AIソフトウェアが2〜5年以内に精度が著しく向上し、コストが低下すると予測しています。これにより、新たな信頼性のあるアプリケーションへのドアが開かれます。しかし、ゲイツはAIの開発における初期の停滞期も予見しています。 AIを通じた途上国の力を高める ゲイツは、AIが途上国をエンパワーする可能性について、スマートフォンを通じて提供される健康アドバイスの魅力的な例を共有しています。AIを医療に統合することで、情報格差を埋め、資源制約のある地域での医療成果を改善する可能性があります。 AIのコストと信頼性:ゲイツの洞察 ゲイツは、AIのコストと信頼性の重要な問題に取り組んでいます。彼は、特にNVIDIAからのAIチップに関連するかなりの費用がかかり、ユニットあたり約3万ドルの費用がかかり、かなりのエネルギーを消費することを認めています。コストとパフォーマンスのバランスを取ることは、AIの景色における重要な課題です。 AIブラックボックス:謎の解読…

AI「ブレイクスルー」:ニューラルネットが人間と同様の言語の一般化能力を持つ

「ニューラルネットワークを用いた人工知能は、人間の知能の重要な側面である新しい言葉を素早く取り入れる点で、ChatGPTを上回ります」

「GANが人工的なセレブリティのアイデンティティを作り出す方法」

イントロダクション 人工知能の時代において、驚くべき現象が展開されています――生成対抗ネットワーク(GAN)が創造的に人工的なセレブリティのアイデンティティを作り出しています。このテクノロジーと創造性の興味深い融合により、完全に新しいタイプのデジタルセレブリティが生まれました。私たちと一緒に、仮想世界を魅了する人工的なセレブリティパーソナリティの創造の魔法を紐解いていく興味深い旅に出かけましょう。GAN の世界に飛び込み、このデジタル芸術の秘密を探求しましょう。どのようにしてGANがこれを実現するのでしょうか?このデジタルアートの裏に隠された秘密を探求しましょう。 出典: Hello Future 学習目標 この記事では、以下のことを学びます。 生成対抗ネットワーク(GAN)の概念 ジェネレーターとディスクリミネーターの訓練方法 GANモデルの実装のステップバイステッププロセス 敵対的なトレーニングを通じてGANが時間とともに改善する仕組み この記事は、データサイエンスブログマラソンの一環として公開されました。 生成対抗ネットワーク(GAN) 生成対抗ネットワーク(GAN)は、Goodfellowによって開発された深層学習モデルです。その名前からも、GANの目的を理解することができます。そうです!私たちは生成の目的でそれを使用します。GANは何かを生成するネットワークです。画像、テキスト、音声など、現実世界のデータに似た合成データを生成するためにGANを使用します。GANは2つのニューラルネットワークから構成されています。これらはジェネレーターとディスクリミネーターと呼ばれます。トレーニング中、この2つのネットワークはお互いに競い合いながらより良い性能を発揮するように訓練されます。 ジェネレーターとは? ジェネレーターは、生成を担当するニューラルネットワークです。出力をするためには入力が必要です。ジェネレーターが受け取る入力はランダムなノイズです。ジェネレーターはこのランダムなノイズを受け取り、実データに似た出力を生成しようとします。ディスクリミネーターからフィードバックを受け取るたびに、ジェネレーターは自己改善し、次回はより良いデータを生成します。たとえば、画像生成の場合、ジェネレーターは画像を生成します。トレーニングを通じてジェネレーターが改善するにつれ、最初はランダムなノイズから始まり、次第に出力を洗練させてより現実的になります。最初の試行では、元のデータに最も似たものを生成することができないかもしれません。時にはまったく画像ではないものさえ生成することもあります。トレーニングが進むにつれ、より正確な良質なデータが生成されます。 ディスクリミネーターとは? ディスクリミネーターは、評価を担当するニューラルネットワークです。簡単に理解するために、それを探偵と呼ぶことができます。このディスクリミネーターは、実際のデータとジェネレーターによって生成された偽のデータの両方を受け取ります。偽のデータを実データと区別する必要があります。簡単に言えば、実際のデータと偽のデータを分類するということです。ジェネレーターと同様に、トレーニングが進むとディスクリミネーターもより優れた判別ができるようになります。最初の試みでは最高の結果を出せないかもしれませんが、トレーニングが進むにつれてより良い結果を出せるようになり、最終的にはほとんどの偽のデータを識別できるようになります。探偵のように働く必要があります。 敵対的トレーニング ジェネレーターとディスクリミネーターの両方が訓練を受け、これは敵対的トレーニングと呼ばれています。両者はお互いに競争的なトレーニングを行います。ジェネレーターが実データに似た偽のデータを生成し、ディスクリミネーターは偽のデータを識別しようとします。トレーニングプロセスの次のステップでは、ジェネレーターは自己改善を目指し、ディスクリミネーターを騙すための偽のデータを生成します。再びディスクリミネーターが偽のデータを検出します。このようにトレーニング中、両者はそれぞれのタスクでより良いパフォーマンスを発揮します。このプロセスは、ジェネレーターが非常に現実的なデータを生成し、ディスクリミネーターが本物と区別できなくなるまで続けられます。この段階でGANはある種の均衡状態に達し、生成されたデータは非常に実データに似ています。 “`html 実装 まず、必要なライブラリをすべてインポートしましょう。これには主にtorchモジュールが含まれます。可視化のためにmatplotlibを使用します。…

会議に窒息することなく、データサイエンティスト/アナリストの関与を促進する5つのアイデア

データサイエンスまたはデータ分析チームを管理する場合、チームメンバーの中断されない焦点の時間を確保するとともに、関与を促進するという良いバランスを見つけることは課題です...

「Amazon SageMaker Data Wranglerを使用して機械学習のためにPII情報を自動的に修正します」

「顧客は、データと洞察を自動的に抽出するために、大規模な言語モデル(LLM)などのディープラーニングアプローチを利用したいという要望がますます高まっています多くの業界にとって、機械学習(ML)に役立つデータには個人情報(PII)が含まれる場合がありますディープラーニングモデルのトレーニング、微調整、利用を行う際に、顧客のプライバシーを保護し、規制要件を遵守するために、...」

特定のドメインに特化した物体検出モデルの最適化方法

物体検出は、学術界から産業分野まで、広範な領域で広く採用されていますその理由は、低い計算コストで素晴らしい結果を提供する能力にありますしかし、それにもかかわらず、...

「ジェネレーティブAIがビジネス、健康医療、芸術を再構築する方法」

紹介 生成的な人工知能、一般にはGenAIと呼ばれるものは、AI革命の最前線に位置し、ロボットの無限の創造力と問題解決能力を可能にしています。GenAIは、最先端の技術と人間の創造力を融合させたものであり、人工知能が可能な限りの領域を追求する世界において、単なる予測を超えた内容やデータ、解決策を人間の情報に近い形で生成するために機械を使用することによって分類されます。この記事では、芸術、医学、ビジネス、交通、ゲームなどの世界を探求しながら、GenAIの重要な影響について、基本的なアイデアから実際の応用や複雑な実装までを探ります。この詳細な研究では、生成的なAIが私たちの周りのすべてを再構築している様子を検証します。GenAIの能力を深く理解し、実際の応用例に触発されることでしょう。 学習目標 この記事を読むことで、あなたは生成的なAIの基礎を理解することができます。 実践的な効果をもたらすために生成的なAIをどのように使用するかを知ることができます。 これらのユースケースがいかに生成的なAIを活用しているかについてさらに学ぶことができます。 将来的に生成的なAI技術の可能性についてさらに学ぶことができます。 この記事はデータサイエンスブロガソンの一環として公開されました。 生成的なAIの理解 「生成的なAI」として知られる一連の人工知能モデルとアルゴリズムは、人間が生み出したデータや素材、その他のアウトプットに驚くほど似た結果を生み出すことができます。テキスト、音楽、グラフィックス、さらにはソフトウェアのコードや学術研究論文など、さまざまな出力が含まれます。 生成的なAIとは何ですか? 「新しいコンテンツ、データ、または解決策を作り出す人工知能」とも呼ばれる生成的なAIは、人工知能の最先端のサブフィールドです。通常のAIモデルが主に分析と予測に焦点を当てるのに対し、生成的なAIはディープラーニングのアルゴリズムの力を活用して、人間のデータに密接に似た結果を生み出すことができます。 これらの最先端のモデル、例えば変分オートエンコーダ(VAE)や生成的対抗ネットワーク(GAN)などは、複雑なデータ分布を理解し、独自の文脈に関連する情報を提供する能力を持っており、広範な応用領域で貴重な存在となっています。 生成的なAIのユースケース さて、さまざまなユースケースと生成的なAIが私たちの周りのすべてを再構築する方法について深く掘り下げましょう。 芸術と創造性 機械が音楽やアートを創造する能力により、生成的なAIは創造的な革命を引き起こしました。ミュージシャンやアーティストは、これらのモデルを使用して新しい表現方法を実験しています。たとえば、AIVA(Artificial Intelligence Virtual Artist)音楽作曲システムでは、ディープラーニングが使用され、人間のミュージシャンに匹敵する古典音楽の作品を創造しています。 自然言語処理(NLP) 生成的なAIモデルは、自然言語処理におけるチャットボットやテキスト生成の改善に道を開きました。OpenAIが開発したGPT-3(Generative Pre-trained Transformer…

「このAIニュースレターはあなたが必要とするもの全てです #69」

Googleは、MicrosoftやAdobeといった企業に続き、彼らが提供するAIサービスの利用者を知的財産権侵害に関する訴訟から保護することに取り組むことを発表しました...

Google MapsのAir Quality APIから大気汚染データを取得するためのPythonツール

2023年8月、GoogleはマッピングAPIのリストに、空気品質サービスの追加を発表しましたそれについての詳細はこちらでお読みいただけますこの情報は現在、内部からも利用できるようになったようです

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us