Learn more about Search Results AI workflow - Page 5
- You may be interested
- エンドツーエンドの労働力管理を取得する...
- 「安全な飲料水のための信頼性のある1ドル...
- 2023年の最高のAIテキスト生成ツール
- MuZero ルールなしでGo、チェス、将棋、ア...
- NumpyとPandasを超えて:知られざるPython...
- 小さな言語モデルでも高い性能を発揮でき...
- マイクロソフトが「TypeChat」をリリース...
- このAI研究は、車両の後続振る舞いモデリ...
- 「意思決定科学は静かに新しいデータサイ...
- GPT-1からGPT-4まで:OpenAIの進化する言...
- 「ギザギザしたCOVIDチャートの謎を解決す...
- 「LLMアプリケーションを構築する際に知っ...
- ユレカ:大規模な言語モデルをコーディン...
- 未来のマスタリング:IaC技術を活用したLL...
- 「あなたの携帯電話の画面をぼやけさせる...
LangChainを使用したLLMパワードアプリケーションの構築
はじめに 言語処理の未来へようこそ!言語が人々と技術をつなぐ架け橋である世界において、自然言語処理(NLP)の進歩によって素晴らしい機会が広がりました。これらの進歩の中で、革命的な言語モデルであるLLM(大規模言語モデル)が登場し、テキストベースのデータとのやり取り方法を完全に変えました。私たちは、LLMの驚異を探求し、LLMを活用したアプリケーションを構築する方法を学びます。それには、LLMのフルポテンシャルを引き出す革新的なプラットフォームであるLangChainを使用します。 言語モデルは、人間らしいテキストを理解し生成する能力により、さまざまなアプリケーションで重要な役割を果たしています。これらのモデルは、機械翻訳、感情分析、チャットボット、コンテンツ生成など、自然言語処理のタスクを革新しました。彼らは貴重な洞察を提供し、コミュニケーションを改善し、ユーザーエクスペリエンスを向上させます。 学習目標 言語モデル(LLM)の基礎と、インテリジェントなアプリケーションの構築における重要性を理解する。 LangChainをアプリケーション開発ワークフローに統合し、そのAPIを活用する方法を学ぶ。 Langchainでできることについての洞察を得る。 Langchainを使用してさまざまなLLMと対話する。 LLMを使用して対話型チャットボットを作成する。 LangchainでのファインチューニングLLMの意味を理解する。 この記事は、データサイエンスブログマラソンの一環として公開されました。 LLMとは何ですか? LLM(Large Language Model)とは、膨大なテキストデータでトレーニングされた最新の言語モデルを指します。深層学習の技術を利用して人間らしいテキストを理解し生成するため、テキスト補完、言語翻訳、感情分析など、さまざまなアプリケーションにおいて強力なツールとなっています。LLMの最も有名な例の1つは、OpenAIのGPT-3であり、言語生成能力に対して大きな注目と賞賛を浴びています。 LangChainの紹介 あなたのアプリケーションが努力なく人間らしいテキストを理解し生成できる世界を想像してください。LangChainへようこそ。これは、言語モデル(LLM)の魅惑的な領域への入り口を開く先駆的なプラットフォームです。LangChainを使用することで、LLMの非凡な能力を連携させ、プロジェクトに統合することができます。LangChainが明らかにする魅力的な機能と無限の可能性を探求しましょう。 LangChainは、開発者にシームレスで直感的なインターフェースを提供し、アプリケーションでLLMのパワーを最大限に活用することができる高度なプラットフォームです。言語処理のフルポテンシャルを引き出すためのさまざまなAPIやツールを提供しています。 LangChainの特徴と機能 LangChainには、あなたを魅了するさまざまな機能と機能が満載されています。文章の補完から感情の分析、言語の翻訳から固有名詞の認識まで、LangChainは言語を使って驚きを生み出すためのツールを提供します。APIのドキュメントを探索することで、まるで魔法使いが呪文を使いこなすかのように、これらの機能を効果的に使用する方法の秘密を発見します。 LLMをプロジェクトに統合する LangChainの機能と能力を理解したら、それを自分自身のプロジェクトに魔法として織り込む時です。LangChain SDKを使用することで、既存のコードベースとLLMの非凡な能力をシームレスに統合することができます。わずか数行のコードで、LLMの言語処理能力を呼び出し、あなたのアプリケーションを人間らしいテキストを理解し生成するインテリジェントな存在に変えることができます。 LLMの魔法が解き放たれる…
エンタープライズAIとは何ですか?
エンタープライズAIの紹介 時間は重要であり、自動化が答えです。退屈で単調なタスク、人間によるミス、競争の混乱、そして最終的には曖昧な意思決定の苦闘の中で、エンタープライズAIは企業が機械と協力してより効率的に働くことを可能にしています。さもなければ、Netflixでお気に入りの番組を見つけたり、Amazonで必要なアクセサリーを見つけて購入する方法はどうやって見つけるのでしょうか?自動車のWaymoからマーケティングでの迅速な分析まで、人工知能はすでに私たちに十分な理由を提供しています。しかし、それが組織をどのように助けているのでしょうか?また、組織はそれをどのように使用しているのでしょうか?答えはエンタープライズAIです。 こんにちは! Analytics Vidhya Blogの熱心な読者として、私たちはあなたに素晴らしい機会を提供したいと思います。データサイエンスとAIの愛好家の皆さん、ぜひ私たちと一緒に非常に期待されているDataHack Summit 2023に参加してください。8月2日から5日まで、バンガロールの名門NIMHANSコンベンションセンターで行われます。このイベントは、実践的な学習、貴重な業界の洞察、そして無敵のネットワーキングの機会で満たされた、爆発的なものになるでしょう。これらのトピックに興味があり、これらのコンセプトが現実になることをもっと学びたい場合は、こちらのDataHack Summit 2023の情報をチェックしてください。 エンタープライズAIの定義 エンタープライズAIは、大規模な組織内で人工知能技術と技法を応用して、さまざまな機能を改善することを指します。これらの機能には、データの収集と分析、自動化、顧客サービス、リスク管理などが含まれます。エンタープライズAIは、AIアルゴリズム、機械学習(ML)、自然言語処理(NLP)、コンピュータビジョンなどのツールを使用して、複雑なビジネスの問題を解決し、プロセスを自動化し、大量のデータから洞察を得ることを目指しています。 エンタープライズAIは、サプライチェーン管理、ファイナンス、マーケティング、顧客サービス、人事、サイバーセキュリティなど、さまざまな領域に実装することができます。これにより、組織はデータに基づいた意思決定を行い、効率を向上させ、ワークフローを最適化し、顧客体験を向上させ、市場で競争力を持つことができます。 出典:Publicis Sapient エンタープライズAIの主な特徴 エンタープライズAIは、データ分析から自動化まで、組織のさまざまな側面に貢献します。それは異なる技術や技法、そして方法の産物であり、それは各業界やビジネスによって異なるかもしれません。以下にその仕組みを示します。 エンタープライズアプリケーション向けのAI技術の組み合わせ エンタープライズAI企業は、機械学習、自然言語処理、エッジコンピューティング、ディープラーニング、コンピュータビジョンなどの技術の組み合わせを活用することができます。これらの技術は、予測分析、画像認識などのタスクを通じて、ビジネスを支援するための強力な機能を提供します。Netflixのパーソナライズされた推奨機能は、ディープラーニングなどの技術を使用した、その一例です。 組織のニーズに合わせてカスタマイズされ設計された エンタープライズAIは、さまざまな技術の組み合わせです。組織がシステム内でどのようにアプローチするか、どの技法を採用するかは、ビジネスの要件によるものです。なぜなら、サプライチェーン管理に適した方法が、eコマースの場合に必要なわけではないからです。 たとえば、ヘルスケアのエンタープライズAI企業は、画像解析、患者モニタリングなどの技法を採用して、医療業務の効率を向上させています。エネルギー業界では、予測保守、再生可能エネルギーの統合などの技術と技法を使用して、エネルギーの発電と消費を最適化しています。その活用方法の違いにより、組織は人工知能のさまざまな分野を航海しています。 エンタープライズAIの利点と応用 以下はエンタープライズAIの主な利点です:…
メタAIのもう一つの革命的な大規模モデル — 画像特徴抽出のためのDINOv2
Mete AIは、画像から自動的に視覚的な特徴を抽出する新しい画像特徴抽出モデルDINOv2の新バージョンを紹介しましたこれはAIの分野でのもう一つの革命的な進歩です...
言語学習モデルにおけるOpenAIの関数呼び出しの力:包括的なガイド
OpenAIの関数呼び出し機能を使用したデータパイプラインの変換:PostgreSQLとFastAPIを使用した電子メール送信ワークフローの実装
AIOpsの力を解き放つ:最適化されたITオペレーションのための知的自動化によるDevOpsの強化
DevOpsのプラクティスを革命化するAIOps(ITオペレーションのための人工知能)の変革的な可能性を発見してください
チャットGPTプラグインとの安全なインタラクションの変換ガイド
イントロダクション かつては静的なコンテンツの領域であったChatGPTは、ChatGPTプラグインの注入によって革命的な変革を遂げています。これらのプラグインは仮想の鍵として機能し、デジタルストーリーテリングの未踏の領域を開拓し、ユーザーエンゲージメントを再構築しています。このガイドでは、ChatGPTプラグインがブログの世界にシームレスに統合される過程を探求し、創造性を育み、コミュニティを構築し、絶えず変化する景観での進歩を予測する可能性を明らかにします。 学習目標 ChatGPTプラグインを有効化およびインストールする手順を学び、言語モデルの機能を向上させる方法を理解する。 ChatGPTプラグインのアクティブなステータスを確認し、シームレスなユーザーエクスペリエンスのためにそのパフォーマンスを監視する方法を理解する。 APIキーの取得と必要なパッケージのインストールを含む、アプリケーションにChatGPTプラグインを統合するための簡略化されたガイドを探索する。 医療、金融、製造などの実際の応用に焦点を当て、ChatGPTプラグインが効率と意思決定に与える影響を示す。 この記事はデータサイエンスブログマラソンの一環として公開されました。 ChatGPTプラグインの世界に飛び込むことは、会話ツールキットに個人のタッチを加えることと同じです。これらのモジュール拡張機能は、ユーザーが相互作用を調整し、特定のブログ目標を達成する力を与えています。コンテンツを生成するだけでなく、オーディエンスに対してユニークでダイナミックな体験を作り上げることに関わるのです。 ChatGPTプラグインの変革的な役割 ChatGPTプラグインの変革的な役割について掘り下げることで、ユーザーエンゲージメントへのその変革的な影響が明らかになります。ChatGPTは単体の形態で印象的な自然言語処理を提供しますが、プラグインは専門機能を導入することにより、その体験をさらに向上させます。これらの機能は、トリガーされる応答や文脈に気を配った相互作用から外部APIによるリアルタイム情報の取得まで、さまざまなものです。 この革新的なダイナミックは、静的な会話モデルから多目的かつ適応性のあるツールへの進化を示しており、ChatGPTとの相互作用の方法において新たな次元を開くものです。これらのプラグインの具体的な内容に探求していくことで、会話型AIの世界を再構築する可能性がますます明らかになります。 プラグインの影響を活用する 私たちの探求では、これらの多才なツールの深い意義と安定性を慎重に検証します。ChatGPTプラグインが重要であり続ける理由を探求し、ユーザーとの相互作用の形成と豊かさを探ります。 このセクションでは、ChatGPTフレームワーク内でChatGPTプラグインの安定性を詳細に検証し、その信頼性と堅牢性について洞察を提供します。これらのプラグインの影響を探ることによって、さまざまな会話シナリオでの安定したパフォーマンスと重要性について包括的な理解を提供することを目指しています。 制約と技術の理解 実践的な側面について見てみましょう。安定性と制約は重要な考慮事項です。これらのプラグインはChatGPTフレームワーク内でどのように動作するのでしょうか?ニュアンスを理解し、エクスペリエンスを最適化し、情報を得るための情報を得るための知識を活用しましょう。同時に使用できるプラグインの数にはどのような制約がありますか?効果的なカスタマイズに関する実践的な考慮事項を探索しましょう。 ChatGPTプラグインの能力とパフォーマンスに影響を与える、GPT-4の興味深い影響について。基礎となるモデルの次のイテレーションとして、GPT-4の進歩はプラグインの機能に影響を与えます。この探求により、技術の発展がChatGPTプラグインの機能にどのように影響するかが示されます。 これらの制約と技術的なニュアンスを包括的に理解することで、ユーザーはChatGPTプラグインの領域を知識を活用して安全かつ効果的に進めることができます。 安全性とモニタリング 安全性は最重要です。ChatGPTプラグインに関連する安全性について掘り下げ、安全な相互作用のための対策を概説します。安全性に関するよくある質問について、簡潔なFAQ形式で説明し、分かりやすさと安全性を築き上げます。 ChatGPTプラグインの安全性に焦点を当てたよくある質問(FAQ)を提示します。これらはChatGPT体験にプラグインを組み込むことに関するユーザーの疑問をカバーします。FAQは、安全に関する側面に関する明確化を求めるユーザーにとって貴重なリソースとなります。 このステップバイステップの検証ガイドにより、ユーザーは自分のプラグインが会話に積極的に貢献していることを確認できるようになります。安全性を重視し、効果的なモニタリングのためのツールを提供することで、このセクションではユーザーがChatGPTプラグインの世界を安全かつ自信を持って進むために必要な知識を提供します。 費用、アクセス、およびインストール…
「オープンソースツールを使用して、プロのように音声をクローンし、リップシンク動画を作る方法」
紹介 AI音声クローンはソーシャルメディアで大流行しています。これにより、創造的な可能性が広がりました。ソーシャルメディアで有名人のミームやAI声の上書きを見たことがあるかもしれません。それがどのように行われているのか疑問に思ったことはありませんか?Eleven Labsなど、多くのプラットフォームがAPIを提供していますが、オープンソースソフトウェアを使用して無料で行うことはできるのでしょうか?短い答えは「YES」です。オープンソースには音声合成を実現するためのTTSモデルとリップシンクツールがあります。したがって、この記事では、音声クローンとリップシンクのためのオープンソースのツールとモデルを探求してみましょう。 学習目標 AI音声クローンとリップシンクのためのオープンソースツールを探求する。 FFmpegとWhisperを使用してビデオを転写する。 Coqui-AIのxTTSモデルを使用して声をクローンする。 Wav2Lipを使用してビデオのリップシンクを行う。 この技術の実世界での使用例を探求する。 この記事はData Science Blogathonの一環として公開されました。 オープンソーススタック 既にご存じのように、私たちはOpenAIのWhisper、FFmpeg、Coqui-aiのxTTSモデル、およびWav2lipを私たちの技術スタックとして使用します。しかし、コードに入る前に、これらのツールについて簡単に説明しましょう。そして、これらのプロジェクトの作者に感謝します。 Whisper: WhisperはOpenAIのASR(自動音声認識)モデルです。これは、多様なオーディオデータと対応するトランスクリプトを用いて、650,000時間以上のトレーニングを受けたエンコーダ-デコーダトランスフォーマーモデルです。そのため、オーディオからの多言語の転写に非常に適しています。 エンコーダは、30秒のオーディオチャンクのログメルスペクトログラムを受け取ります。各エンコーダブロックは、オーディオ信号の異なる部分を理解するためにセルフアテンションを使用します。デコーダは、エンコーダからの隠れ状態情報と学習済みの位置エンコーディングを受け取ります。デコーダはセルフアテンションとクロスアテンションを使用して次のトークンを予測します。プロセスの最後に、認識されたテキストを表すトークンのシーケンスを出力します。Whisperの詳細については、公式リポジトリを参照してください。 Coqui TTS: TTSはCoqui-aiのオープンソースライブラリです。これは複数のテキスト読み上げモデルをホストしています。Bark、Tortoise、xTTSなどのエンドツーエンドモデル、FastSpeechなどのスペクトログラムモデル、Hifi-GAN、MelGANなどのボコーダなどがあります。さらに、テキスト読み上げモデルの推論、調整、トレーニングのための統一されたAPIを提供しています。このプロジェクトでは、xTTSというエンドツーエンドの多言語音声クローニングモデルを使用します。これは英語、日本語、ヒンディー語、中国語などを含む16の言語をサポートしています。TTSについての詳細情報は、公式のTTSリポジトリを参照してください。 Wav2Lip: Wav2Lipは、「A Lip Sync…
Mixtral-8x7B スパースなエキスパートの混合理解と実行
最近の大規模言語モデル(LLM)のほとんどは、非常に似たようなニューラルアーキテクチャを使用していますたとえば、Falcon、Mistral、およびLlama 2モデルは、セルフアテンションとMLPの類似の組み合わせを使用しています...
「Amazon SageMaker Pipelines、GitHub、およびGitHub Actionsを使用して、エンドツーエンドのMLOpsパイプラインを構築する」
機械学習(ML)モデルは孤立して動作するものではありません価値を提供するためには、既存の製造システムやインフラに統合する必要がありますそのため、設計と開発の過程でMLライフサイクル全体を考慮する必要がありますMLオペレーション(MLOps)は、MLモデルの生涯にわたって効率化、自動化、およびモニタリングを重視しています堅牢なMLOpsパイプラインを構築するには、異なる部門間の協力が求められます[…]
「QLoRAを使ってLlama 2を微調整し、AWS Inferentia2を使用してAmazon SageMakerに展開する」
この記事では、パラメータ効率の良いファインチューニング(PEFT)手法を使用してLlama 2モデルを微調整し、AWS Inferentia2上でファインチューニングされたモデルを展開する方法を紹介します AWS Neuronソフトウェア開発キット(SDK)を使用してAWS Inferentia2デバイスにアクセスし、その高性能を活用しますその後、[…]の動力を得るために、大きなモデル推論コンテナを使用します
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.