Learn more about Search Results 3 - Page 5
- You may be interested
- 「MITの研究者が、おそらくほぼ正確な(PA...
- オペレーションの頭脳:人工知能とデジタ...
- CMUの研究者がFROMAGeを紹介:凍結された...
- 「TransformersとTokenizersを使用して、...
- 「AI彼女の世界を探検する:関係の未来へ...
- 「Inflection AIが22,000のGPUを搭載した...
- トップのAIメールアシスタント(2023年12月)
- 「AI革命:主要産業における応用とユース...
- バイナリおよびマルチクラスのターゲット...
- 「GoogleのMed-PaLM 2は最も先進的な医療A...
- ルーシッドドリーマー:インターバルスコ...
- 「サンゴ礁の衰退を転換する:CUREEロボッ...
- 「生成AIにおけるLLMエージェントのデコー...
- AIによるテキストメッセージングの変革:...
- あなたのデータが適切にモデル化されてい...
「2023年のトップ8のAIトレンド:年間レビュー」
葉っぱが金色に変わり、12月の寒さが広がる中、人工知能の領域で目覚ましい進歩が見られた今年を振り返る時が来ました。2023年は単なる進歩の年ではありませんでした。それはトライアンフの年であり、AIが成し遂げられる限界が繰り返し押し広げられ、再定義された年でした。LLM(大規模言語モデル)の能力における画期的な進展から、前例のないほど世界とのナビゲーションや相互作用が可能な自律エージェントの登場まで、この年はこの変革的な技術の無限の可能性を示すものでした。 この包括的な探求の中で、私たちは2023年のAIを定義した8つの主要なトレンドについて掘り下げ、産業を再構築し、未来を革命化する革新を明らかにしていきます。だから、AI愛好家の皆さん、私たちは技術史の記録に永遠に刻まれる一年についての旅に出発です。 RLHFとDPOの微調整 2023年は、大規模言語モデル(LLM)の能力を向上させるための重要な進展が見られました。2つの主要なアプローチが登場しました: 人間のフィードバックに基づく強化学習(RLHF):この手法は、人間のフィードバックを活用してLLMの学習プロセスをガイドし、持続的な改善と進化するユーザーのニーズや好みに対応させることができます。このインタラクティブなアプローチにより、LLMは複雑または主観的な領域において微妙な理解力と意思決定能力を開発することができます。 直接的な選好最適化(DPO)::DPOはよりシンプルな代替手法であり、明示的な強化信号を必要とせずにユーザーの選好に直接最適化します。このアプローチは効率性とスケーラビリティを重視し、より速い適応と展開を必要とするアプリケーションに最適です。そのすっきりした性格により、ユーザーフィードバックに基づいてLLMの振る舞いを迅速に調整することができ、進化する好みに合わせることができます。 RLHFとDPOはLLMの開発における重要な進展を表していますが、既存の微調整手法を置き換えるのではなく、補完するものです: 事前学習:大規模なテキストとコードのデータセットを用いてLLMを訓練し、一般的な言語理解能力を学習させること。 微調整:特定のタスクまたはデータセットに基づいてLLMをさらに訓練し、特定のドメインやアプリケーションに適した能力を調整すること。 マルチタスク学習:LLMを複数のタスクに同時に訓練することで、共有表現を学習し、各タスクのパフォーマンスを向上させること。 LLMの効率性に対処する LLMの能力が向上するにつれて、計算上の制約とリソースの限界が重要な懸念事項となりました。その結果、2023年の研究はLLMの効率性の向上に焦点を当て、以下のような技術の開発をもたらしました: FlashAttention:この革新的なアテンションメカニズムは、LLMの計算コストを大幅に削減します。これにより、より速い推論と訓練が可能になり、LLMをリソースに制約のある環境でより実用的に利用し、実世界のアプリケーションに統合することができるようになります。 LoRA および QLoRA:LoRAやQLoRAなどの手法は、2023年にも提案された軽量かつ効率的なLLMの微調整方法を提供します。これらの手法は、既存のLLMアーキテクチャに追加された小さなモジュールであるアダプターに依存し、再トレーニングすることなくカスタマイズを可能にします。これにより、著しい効率の向上、より速い展開時間、さまざまなタスクへの適応性の向上が実現されます。 これらの進展は、効率的なLLMへの需要の増大に対応し、この強力な技術への広範な導入の道を開き、結果としてこの技術へのアクセスを民主化することにつながります。 検索補完生成(RAG)の浸透 純LLMは巨大な可能性を秘めていますが、それらの正確性と実証的根拠に関する懸念は依然として存在しています。検索補完生成(RAG)は、既存のデータや知識ベースとLLMを組み合わせることで、これらの懸念に対処する有望な解決策として登場しました。このハイブリッドアプローチにはいくつかの利点があります: エラーの減少:外部情報から事実情報を取り込むことにより、RAGモデルはより正確で信頼性のある出力を生成することができます。 拡張性の向上:RAGモデルは純LLMに必要な大規模なトレーニングリソースの必要性を排除し、大規模なデータセットに適用することができます。 低コスト:既存の知識リソースを利用することにより、LLMのトレーニングおよび実行に関連する計算コストを削減することができます。 これらの利点により、RAGは検索エンジン、チャットボット、コンテンツ生成など、さまざまなアプリケーションにおける貴重なツールとして位置付けられています。 自律エージェント…
ボット、詐欺ファームがウェブトラフィックの73%を担当
「アーコーズ・ラボによると、2023年第3四半期においてボットによる悪意のある攻撃と人間による詐欺の集団がウェブとアプリのトラフィックの73%を占めていることが報告されました」
「2Dマテリアルがハードウェアのために3Dエレクトロニクスを再構築する」
国際チームが、積層された2次元材料から成る一体型の3次元集積チップを開発しました
「ノーコードアプリビルダーのトップ10(2023年12月)」
テクノロジーの絶えず進化する風景の中で、ノーコードアプリビルダーの台頭は、アプリ開発の民主化の証ですかつてはベテランプログラマーやソフトウェア開発者の領域にのみデジタルソリューションを作成する時代が終わりましたノーコードプラットフォームは、起業家やビジネスプロフェッショナル、クリエイティブな思考を持つ人々に扉を開いています[…]
このAI論文は、高品質な3Dセグメンテーションを実現するために、与えられたシーン内の任意のオブジェクトのためのセグメントエニシングのための高品質(SANeRF-HQ)フレームワークを紹介しています
香港科技大学、卡内基梅隆大学和达特茅斯学院的研究人员开发了名为SANeRF-HQ(High-Quality的NeRF任意物体分割)的方法,以在复杂场景中实现准确的三维分割。以往基于NeRF的物体分割方法在准确性方面受到限制。而SANeRF-HQ结合了”Segment Anything Model”(SAM)和神经辐射场(NeRF)的功能,提高了分割准确性并在复杂环境中提供了高质量的三维分割。 NeRF在处理复杂场景时面临挑战。SANeRF-HQ通过使用SAM进行开放世界的物体分割,并由用户提示进行指导,以及使用NeRF进行信息聚合来克服这些挑战。它在物体定位的灵活性和视图间一致的分割方面胜过以往的NeRF方法。对NeRF数据集的定量评估凸显了它对三维计算机视觉和分割的潜在贡献。 NeRF在使用多层感知器进行新视图合成方面表现出色。虽然NeRF内的3D物体分割已经取得成功,但Semantic-NeRF和DFF等以前的方法依赖于受限的预训练模型。SAM允许多样的提示,并在分割方面擅长零样例泛化。SANeRF-HQ利用SAM进行开放世界分割和NeRF进行信息聚合,解决了复杂场景中的挑战,并在质量上超越以往的NeRF分割方法。 SANeRF-HQ使用特征容器、蒙版解码器和蒙版聚合器来实现高质量的三维分割。它对SAM特征进行编码,生成中间蒙版,并使用NeRF的颜色和密度场将2D蒙版整合到3D空间中。该系统结合了SAM和NeRF进行开放世界分割和信息聚合。它可以使用NeRF生成的视频和SAM的自动分割功能来执行基于文本和自动的三维分割。 SANeRF-HQ在高质量的三维物体分割方面胜过以往的NeRF方法。它提供了在物体定位和视图间一致的分割方面的灵活性增强。对多个NeRF数据集的定量评估证实了其有效性。SANeRF-HQ展示了在动态NeRF中的潜力,实现了基于文本提示的分割,并能够进行自动的三维分割。使用密度场、RGB相似度和光线对RGB损失可以提高分割的准确性,填补内部和边界的缺失部分,从而获得视觉上改进且更加稳固的分割结果。 总之,SANeRF-HQ是一种高级的三维分割技术,超越了以往的NeRF方法,具有在多个视图上的灵活性和一致性。它在各种NeRF数据集上的优越表现表明,它具有在三维计算机视觉和分割技术方面做出重要贡献的潜力。将其扩展到4D动态NeRF物体分割以及使用密度场、RGB相似度和光线对RGB损失进一步增强了其准确性和质量,融合了颜色和空间信息。 未来的研究可以探索SANeRF-HQ在4D动态NeRF物体分割方面的潜力。它可以通过在复杂和开放世界场景中的应用中进行研究,并与语义分割和场景分解等先进技术相结合,以增强其功能。对SANeRF-HQ在真实世界场景中可用性和有效性进行用户研究可以提供有价值的反馈。进一步探索其在大规模场景和数据集上的可扩展性和效率,以优化实际应用的性能是必要的。
『NYU研究者が提案するGPQA 生物学、物理学、化学の3つの領域の専門家が作成した448の多肢選択問題からなる難解なデータセット』
大型言語モデル(LLM)は人工知能(AI)の最前線にあり、この急速に変化する分野で人間のスキルを凌駕する可能性を示しています。ただし、これらのモデルが超人的な能力に近づくにつれて、公正な評価や人間の理解に合わせることがより困難になります。この問題を解決することは、新しいAIシステムが正確な情報を提供することを保証するために不可欠であり、特に人間が検証できる真実が曖昧な問題において重要です。これはスケーラブルな監視として知られる問題です。 ロバストな評価のテストベッドは、これらのジョブのためのLLMの適合度を評価するために必要です。テストベッドは、特に人間が生成したデータや独立に検証された真実へのアクセスが制限されている場合に、これらのモデルから一貫して正確なデータを得る必要があります。そのようなテストベッドは、人間の知識の外の問題に対して一般化を可能にするために十分に困難でなければならず、高度に訓練された非専門家によるテストも可能にする必要があります。特に専門知識が必要な分野では、LLMの回答の正確さを評価することはより困難です。人間のフィードバックからの強化学習などの監視技術の主要なコンポーネントは、人間の注釈者がLLMの出力の正確さを評価する際の正確さです。ただし、注釈者が経験不足により正確さを区別しにくい場所では、モデルの回答における妄想や相場の悪化といった問題が悪化します。 これらの問題に対応するために、NYU、Cohere、Anthropicの研究者は、GPQA:卒業レベルのGoogle-Proof Q&Aベンチマークを提案します。GPQAは、生物学、化学、物理学の卒業レベルの多肢選択問題をカバーする評価データセットです。興味深いことに、GPQAは各質問に対して多くの時間を費やし、その質問をドメインの専門家や高度に訓練された非専門家と検証しています。これにより、問題がチャレンジングであることが保証されます。GPQAは、詳細な4つのステップの手順の結果です。質問はまず専門家によって開発され、その後他の人によって検証および修正されます。その後、2つの追加の専門家評価者が修正された質問を客観的に評価します。最終的に、各質問に時間をかけて回答する高資格の非専門家評価者がデータセットの複雑さを確認します。従業員のインセンティブは、すべてのレベルで優れた業績を認識し報酬を与えることを考慮して綿密に作成されています。 448の厳しいインスタンスを持つGPQAは、さえない最も先進的なAIシステムでも直面する課題を証明しています。最高のGPT-4ベースのモデルでも39%の正確性しか持ちませんが、専門家は65%、非専門家は34%に達します。これは、既存のモデルを凌駕する次世代モデルに対するスケーラブルな監視技術の研究にとって、このデータセットの価値を強調しています。重要性にもかかわらず、GPQAには非常に限られたモデルの訓練サイズと専門家選択におけるバイアスの可能性などの欠点があります。将来的には、監視データセットは超人的AI監視の標準として未解決の問題を見つけることを目指すかもしれません。これにより、モデルと人間の専門知識の知識ギャップが縮まります。 GPQAは、要求の高い分野で人工知能評価の最前線を拡大する先駆的な評価データセットとして機能します。その開発アプローチと検証技術は、スケーラブルな監視トライアルの洞察を提供することで、超人的なAIシステムの効率的な監視プロトコルの開発を容易にします。GPQAの開発は、AIシステムの評価を評価し、超人的モデルを人間の知識とより一致させることを目指しています。
アドビの研究者たちは、『DMV3D』という新しい3D生成手法を提案していますこの手法は、トランスフォーマーベースの3D大規模再構築モデルを用いて、マルチビューディフュージョンのノイズを除去します
拡張現実(AR)、仮想現実(VR)、ロボティクス、ゲームにおける3Dアセットの作成には共通の課題が存在します。複雑な3Dアセットの作成プロセスを簡素化する3D拡散モデルの人気が高まっていますが、それには注意が必要です。これらのモデルは、トレーニングのために正確な3Dモデルまたはポイントクラウドへのアクセスが必要であり、実際の画像では課題となる場合があります。さらに、潜在的な3D拡散アプローチは、多様な3Dデータセット上で複雑でノイズの多い潜在空間を生み出すことが多く、高品質なレンダリングが困難な課題となっています。 既存の解決策では、多くの手作業や最適化プロセスが要求されることがよくあります。Adobe ResearchとStanfordの研究者チームは、3D生成プロセスをより迅速で現実的かつジェネリックにする取り組みを行っています。最近の論文では、DMV3Dという新しいアプローチが紹介されており、シングルステージのカテゴリー非依存型拡散モデルです。このモデルは、テキストまたは単一の画像入力条件から3Dニューラルラディアンスフィールド(NeRFs)を生成することができ、3Dオブジェクトを作成するのに必要な時間を大幅に短縮します。 DMV3Dの重要な貢献は、3D生成のためのマルチビュー2D画像拡散モデルを使用した画期的なシングルステージ拡散フレームワークです。彼らはまた、ノイズのないトライプレーンNeRFsをノイズの多いマルチビュー画像から再構築するマルチビューデノイザであるLarge Reconstruction Model(LRM)を導入しました。このモデルは、高品質なテキストから3D生成と単一画像再構築をするための一般的な確率的アプローチを提供し、シングルのA100 GPUでわずか30秒程度の直接モデル推論を実現します。 DMV3Dは、3D NeRFの再構築とレンダリングをデノイザに統合し、直接3D監視をせずに学習された2Dマルチビュー画像拡散モデルを作成します。これにより、潜在空間の拡散およびパーツごとの最適化プロセスに別個の3D NeRFエンコーダを個別にトレーニングする必要がなくなります。研究者たちは、オブジェクトを囲む4つのマルチビュー画像の疎なセットを戦略的に使用し、自己遮蔽の重要性を排除しながら3Dオブジェクトを効果的に表現しています。 大規模なトランスフォーマーモデルを活用することで、研究者たちは疎なビューの3D再構築という困難な課題に取り組んでいます。最新の3D Large Reconstruction Model(LRM)を基に構築されたこのモデルは、拡散プロセスのさまざまなノイズレベルに対応できる革新的なジョイント再構築およびデノイズモデルを導入しています。このモデルは、マルチビュー画像拡散フレームワーク内のマルチビュー画像デノイザとして統合されます。 合成レンダリングと実際のキャプチャを含む大規模なデータセットでトレーニングされたDMV3Dは、シングルのA100 GPUで約30秒でシングルステージ3Dを生成する能力を示しています。また、単一画像による3D再構築でも最先端の結果を達成しています。この研究は、2Dと3Dの生成モデルの領域を結びつけ、3D再構築と生成を統一することで、3Dビジョンとグラフィックスのさまざまな課題に取り組むための基盤モデルの開発の可能性を提供します。
「トップ40以上の創発的AIツール(2023年12月)」
ChatGPT – GPT-4 GPT-4は、以前のモデルよりもより創造的で正確かつ安全なOpenAIの最新のLLMです。また、画像、PDF、CSVなどの多様な形式も処理できるマルチモーダル機能も備えています。コードインタープリターの導入により、GPT-4は独自のコードを実行して幻覚を防ぎ、正確な回答を提供することができます。 Bing AI Bing AIは、OpenAIのGPT-4モデルを搭載し、正確な回答を提供するためにウェブを横断することができます。また、ユーザーのプロンプトから画像を生成する能力も持っています。 GitHub Copilot GitHub Copilotは、コードを分析し、即座のフィードバックと関連するコードの提案を提供するAIコード補完ツールです。 DALL-E 2 DALL-E 2はOpenAIによって開発されたテキストから画像を生成するツールで、ユーザーのプロンプトに基づいてオリジナルの画像を作成します。不適切なユーザーリクエストを拒否するように設計されています。 Cohere Generate Cohere Generateは、AIの潜在能力を活用してビジネスプロセスを向上させるものです。メール、ランディングページ、製品の説明など、さまざまな要件に合わせたパーソナライズされたコンテンツを提供します。 AlphaCode AlphaCodeはDeepMindによって開発され、競争力のあるレベルでコンピュータプログラムを作成することができます。 Adobe Firefly…
トップのAIメールアシスタント(2023年12月)
人工知能のメールアシスタントは、メールの作成をスムーズかつ簡単にするためのツールです。自動的なタスク補完、メッセージの優先順位付け、そして即座で洞察に富んだ回答によって、AIのメールアシスタントはあなたの受信箱の管理の負担を軽減する方法です。その結果、ユーザーは最も重要なメールに集中して、より短い時間でより多くの作業を行うことができます。AIによって動作する自動化されたメールヘルパーは、あなたの代わりにメッセージを書いたり送ったりすることもできます。 様々な職業の人々-多忙なオフィス労働者や企業オーナー、個人事業主や学生など-が人工知能とメールヘルパーを利用しています。AIのメールアシスタントは、スケジュールの詰まったプロフェッショナルが受信箱を管理し、重要なメッセージを見逃さないための素晴らしいツールです。AIのメールアシスタントは、起業家や企業オーナーにとって時間と労力を節約するツールです。AIのメールアシスタントを使用することは、学生が組織的に保ち、教授との連絡を取るための素晴らしい方法です。 この記事では、いくつかの人気のあるAIメールアシスタントを比較します。 SaneBox SaneBoxのAIは重要なメールを識別し、他のメールを自動的に整理して集中力を高めるためのお手伝いをします。SaneBoxは、インテリジェントなAIアルゴリズムを使用してあなたのメールの振る舞いを分析します。過去のやり取りから学び、重要なメールを識別し、重要でないメッセージを別のフォルダに移動し、ニュースレターやソーシャルメディアの通知をまとめます。要するに、混沌を秩序に変え、デジタルなやりとりを効率化します。 InboxPro AIと強力な自動化ツールを使用してGmailの生産性を向上させましょう。InboxProは、営業や顧客サポートをよりスムーズにするオールインワンのソリューションです。 Lavender Lavenderは、AIで動作するメールアシスタントであり、世界中の数千の小売業者が電子メールを通じて顧客に対する品質と速度を向上させるのに役立っています。Lavenderはパブリックの広告会社ではなく、プライベートの会社です。クッキーによって動作し、ウェブサイトの機能を向上させることができます。ログインのセキュリティ確保や同意設定のカスタマイズなど、基本的な機能はクッキーに依存しています。ソーシャルメディアの共有、フィードバックの収集、その他の第三者の統合は、機能クッキーに頼って正しく動作します。解析クッキーは訪問回数、跳ね返り率、トラフィックソースなどのデータを収集し、ウェブサイトのユーザーの行動を把握するために使用されます。 Missive Missiveは、チームを組織するためのいくつかの便利なツールを備えた賢明なメールヘルパーです。最近、OpenAIのGPTテクノロジーを組み込むことが可能になりました。これにより、Missiveはアプリを離れることなくメッセージを翻訳したりメールのトーンを変更したりすることができます。ユーザーはプロンプトを使用してAIコードを自分の要件に合わせてカスタマイズすることもできます。顧客との連絡の品質を向上させることは、この統合の主な目標であり、AIに特化したデータを供給して適切な返信を提供する能力を向上させることが一部実現されています。 Superflows Superflowsは、1クリックでアクセスできる事前に作成されたコンテキストに関連する応答を提供することで、お客様が受信箱の取り扱いをより迅速に行えるようにするAIで動作するメールアシスタントです。着信メールへの賢明な応答には、カレンダーリンクや他の関連情報が含まれています。これにより、他のソースからデータをコピー&ペーストすることなく、ユーザーは迅速にメールに反応することができます。 Superhuman Superhumanの直感的で高速なインターフェースは、キーボードショートカットや強力な検索機能などの多数の時間節約機能によるものです。Superhumanの革新的なAIで動作する受信箱の組織機能は、忙しいプロフェッショナルにとってゲームチェンジャーです。そのAIエンジンは、ユーザーにとって最も重要なメッセージを学習し、それらを受信箱の前面に優先的に表示します。同社はまた、各ユーザーがSuperhumanとの時間を最大限に活用できるように、個別のコーチングやトレーニングも提供しています。 Scribbly メールにはさまざまな方法で返信することができ、ユーザーには最善の選択肢が与えられます。Scribblyは、メールの文脈に基づいて関連する素材を提案することで、忙しいビジネスパーソンが時間を節約し、効果的なコミュニケーションを行えるよう支援するAI搭載のメールアシスタントです。Scribblyのメール作成機能を使用すると、ユーザーはメールアシスタントに代わってメールを作成するための情報を提供するか、メールにどのように返信するかを象徴する意図を選択することができます。 Tugan Tuganは、企業が情報やプロモーションメッセージを送信するために使用できる人工知能ベースのメールアシスタントです。提供されたURLやトピックに基づいて、Tuganは企業の特定の興味やニーズに合わせてカスタマイズされたメールを生成するためにAIを使用します。受信者は、最も好きなメッセージを選んで送信することができます。時間に制約のあるプロフェッショナル、作家、コンテンツプロデューサーは、このメールヘルパーを最大限に活用できます。Tuganは、市場に比べてまだベータ版の新しいメールヘルパーです。将来の計画には、お気に入りのビジネスグールーのようにメールを生成する機能や、FacebookやYouTubeの広告テキストの製作が含まれます。 AI Mailer AI Mailerは、企業やプロフェッショナルが高品質でカスタマイズされたメールを簡単に送信できるようにするツールです。GPTとNLPテクノロジーを活用して、消費者のメールに対するカスタマイズされたタイムリーな返信を生成し、コンテキストに適したコンテンツを開発します。柔軟なインターフェースと複数言語への組み込み互換性を備えたAI Mailerは、使いやすさを重視して設計されています。学生やビジネスパーソンは、メールのコミュニケーションを向上させるために使用することができ、カスタマーサービスチームは返信のスピードアップやクライアントとの対話のカスタマイズに活用することができます。…
「27/11から03/12までの週のトップ重要なLLM論文」
大型言語モデル(LLM)は、最近急速に進化しています新しいモデルの世代が開発されるにつれて、研究者とエンジニアは最新の進歩について情報を得続ける必要がありますこの記事は…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.