Learn more about Search Results 調査 - Page 5

「科学者がスーパーバグと戦うため、分子を死から甦らせる」

調査チームは、絶滅した人類の祖先から遺伝情報を採掘するために計算手法を使用し、新しい抗生物質の候補を特定しています

「テスラ、『不十分な』自動運転安全制御で200万台の車両を回収」

テスラは、政府の規制当局が認めたように、誤用を防ぐための十分なコントロールを持っていないと判断されたAutopilotシステムの修正のために200万台以上の車両をリコールしています

「スタートアップに必要なテックパートナー:ソフトウェア開発サービス」

スタートアップの速い世界では、成功を決定づけるためにテクノロジーが重要な役割を果たしていますスタートアップにとって適切なソフトウェア開発サービスは、革新的なアイデアを現実のものにするための推進力となる可能性がありますこの記事では、スタートアップの成功におけるテクノロジーの重要な役割、適切な開発パートナーの選択の複雑さ、その旅行について詳しく説明します...スタートアップに必要なテクノロジーパートナー:ソフトウェア開発サービス」詳細を読む»

「NeurIPS 2023のハイライトと貢献」

「ニューラル情報処理システム(Neural Information Processing Systems)カンファレンスであるNeurIPS 2023は、学問的な追及とイノベーションの頂点として存在していますAI研究コミュニティーで崇拝されるこの一流イベントは、再び最も優れた知識と技術の領域を突破しようとする優れたマインドを集めました今年、NeurIPSは印象的な研究の数々を披露し、知識と技術の範疇において重要なマイルストーンを打ち立てました」

私のウェブサイトのためのチャットボットを作るのが簡単になりました-GenAI

最近、ウェブサイトの顧客エクスペリエンス向上のためにエキサイティングなプロジェクトに着手しましたそれはサポートのためにチャットボットを構築することでしたこの旅は挑戦的でありながらも報酬的であり、貴重な知見を提供しました...

MIT研究者が高度なニューラルネットワークモデルを用いて、脳の聴覚接続に関する新たな知見を明らかにする

MAT研究者たちは、革新的な研究で、深層ニューラルネットワークの領域に進出し、人間の聴覚システムの謎を解き明かすことを目指しています。この探究は、学術的な追求だけでなく、補聴器、人工内耳、脳-機械インターフェースなどの技術の発展にも約束を持っています。研究者たちは、聴覚の課題に対して訓練された最大の深層ニューラルネットワークの研究を行い、これらのモデルが生成する内部表現と、似たような聴覚体験の際に人間の脳で観察される神経パターンの興味深い類似点を明らかにしました。 この研究の重要性を理解するためには、まず解決しようとする問題を把握する必要があります。大きなチャレンジは、人間の聴覚皮質の複雑な構造と機能、特に様々な聴覚タスクの際に対して理解することです。この理解は、聴覚障害や他の聴覚課題を持つ個人の生活に重要な影響を与える技術の開発に不可欠です。 この研究の基礎は、以前の研究に基づきます。ニューラルネットワークが特定の聴覚タスク(例:音声信号からの単語の認識)を実行するために訓練されたことがあります。2018年に行われた研究では、MITの研究者たちは、これらのモデルが生成する内部表現が、同じ音を聴取する個人の機能的磁気共鳴画像(fMRI)スキャンで観察される神経パターンと類似していることを示しました。その後、このようなモデルは広範に使用されるようになり、MITの研究チームはより包括的に評価しました。 この研究では、9つの公開されている深層ニューラルネットワークモデルの分析が含まれており、さらに2つの異なるアーキテクチャを基にMITの研究者が作成した追加の14のモデルも導入されました。これらのモデルは、単語認識から話者の識別、環境音、音楽ジャンルの識別など、様々な聴覚タスクのために訓練されました。これらのモデルのうち2つは、複数のタスクを同時に処理できるように設計されています。 この研究の特徴は、これらのモデルが人間の脳で観察される神経表現とどれだけ近いかを詳細に調査していることです。その結果は、これらのモデルが、背景ノイズを含む聴覚入力にさらされた場合に、人間の聴覚皮質で観察されるパターンと密接に一致することを示しています。この発見は重要な意義を持ち、背景ノイズが普遍的に存在する実世界の聴覚状態をより正確に反映するため、ノイズを加えてモデルを訓練することが望ましいことを示唆しています。 提案された手法の複雑さに深く入り込むと、魅力的な旅になります。研究者たちは、モデルをノイズの中で訓練することの重要性を強調し、多様なタスクと背景ノイズを含む聴覚入力にさらされたモデルが、人間の聴覚皮質で観察される活性パターンに似た内部表現を生成することを主張しています。これは、個人がしばしばさまざまなレベルの背景ノイズの中で聴覚刺激に直面する実世界の聴覚シナリオで直感的にも合致します。 この研究はさらに、人間の聴覚皮質内の階層的な組織の考え方を支持しています。要するに、モデルの処理段階は異なる計算機能を反映しており、初期段階では主要聴覚皮質で観察されるパターンに類似しています。処理が進むにつれて、表現は主要皮質を超えて脳の他の領域で見られるパターンにより近くなります。 さらに、異なるタスクに訓練されたモデルは、脳の特定の調整特性を説明する能力があります。例えば、音声関連のタスクに訓練されたモデルは、脳の音声選択領域とより一致しています。このタスク固有の調整特性は、さまざまな聴覚処理の側面を再現するためにモデルを調整する上で貴重な洞察を提供し、脳が異なる聴覚刺激にどのように応答するかを微妙に理解する手助けとなります。 まとめると、MITが行った聴覚タスクのために訓練された深層ニューラルネットワークの包括的な探求は、人間の聴覚処理の秘密を解き明かすための重要な進展となります。ノイズでモデルを訓練する利点と、タスク固有のチューニングを観察することによって、より効果的なモデルの開発の可能性が広がります。これらのモデルは、脳の反応と行動を正確に予測する能力を持ち、補聴器のデザイン、人工内耳、脳-機械インターフェースの革新的な進歩をもたらす可能性を秘めています。MITの先駆的な研究は、聴覚処理の理解を豊かにし、聴覚研究と技術の革新的な応用に向けた道筋を描いています。

自然言語処理:AIを通じて人間のコミュニケーションの力を解き放つ

この記事では、NLPの理解と進化について取り上げますAIがコミュニケーションの世界にどのように貢献できるかを学びましょう

「アウトライア検出手法の比較」

外れ値検出は、与えられたデータセット内の異常値(珍しい観測値)を特定するための教師なしの機械学習タスクですこのタスクは、私たちの利用可能なデータが多い現実世界のケースで役立ちます…

アップルの研究者がDeepPCRを公開:通常は順次処理される操作を並列化してニューラルネットワークの推論とトレーニングの速度を向上させる新しい機械学習アルゴリズム

人工知能や深層学習の進展により、さまざまな革新が実現されています。テキストや画像の合成、分割、分類などの複雑なタスクは、ニューラルネットワークの助けを借りて成功裏に処理されています。しかし、ニューラルネットワークのトレーニングにはコンピューティングの要求があり、適切な結果を得るまでには数日または数週間かかる場合があります。事前に訓練されたモデルの推論も、複雑なデザインの場合には遅くなる場合があります。 並列化技術は深層ニューラルネットワークのトレーニングと推論を高速化します。これらの手法は広く使用されていますが、ニューラルネットワークの一部の操作はまだ順次に実行されています。拡散モデルは、ノイズ低減ステージの続けざまに出力を生成し、前方および後方パスは層ごとに行われます。ステップ数が増えると、これらのプロセスの順次実行は計算上の負担となり、計算のボトルネックにつながる可能性があります。 この問題に対処するために、Appleの研究チームはDeepPCRという独自のアルゴリズムを導入し、ニューラルネットワークのトレーニングと推論を高速化しようとしました。DeepPCRは、一連のLステップを一定の方程式の答えとして認識することによって機能します。チームは、この解を取得するためにParallel Cyclic Reduction (PCR) アルゴリズムを使用しました。DeepPCRの主な利点は、順次プロセスの計算コストをO(L)からO(log2 L)に削減できることです。特にLの値が大きい場合には、この複雑性の削減により速度が向上します。 チームは、DeepPCRの複雑性の低減と高速化の条件を検証するために実験を行いました。DeepPCRを適用して、多層パーセプトロンの前方パスと後方パスを並列化することで、前方パスでは30倍、後方パスでは200倍の高速化を達成しました。 チームはまた、DeepPCRの適応性を示すために、1024層を持つResNetのトレーニングに使用しました。DeepPCRのおかげで、トレーニングは最大7倍速く完了することができます。この技術は、拡散モデルの生成フェーズで使用され、シーケンシャルアプローチよりも11倍高速な生成を行います。 チームは、主な貢献を以下のようにまとめています。 ニューラルネットワークのトレーニングと推論の順次プロセスを並列化するための革新的なアプローチであるDeepPCRを紹介しました。その主な特徴は、列長を表すLをO(L)からO(log2 L)に低減する能力です。 DeepPCRは、多層パーセプトロン(MLP)の前方パスと後方パスを並列化するために使用されました。この技術のパフォーマンスに関する詳細な分析が行われ、基本的な設計パラメータを考慮しながら、高パフォーマンスの領域を特定しました。スピード、解の正確性、メモリ使用量のトレードオフも調査しています。 DeepPCRは、MNISTおよびMNIST、CIFAR-10、CelebAのデータセットで訓練された拡散モデルのディープResNetのトレーニングを高速化するために使用されました。DeepPCRは著しく高速化されている一方で、ResNetトレーニングでは7倍高速化し、拡散モデルの生成では11倍高速化し、シーケンシャルな手法と比較可能な結果を生成します。

「データの必要量はどのくらいですか? 機械学習とセキュリティの考慮事項のバランス」

データサイエンティストにとって、データは多ければ多いほどよいものとは限りませんしかし、組織の文脈を広く見ると、自身の目標と他の考慮事項とのバランスを取らなければなりませんデータの収集及び...

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us