Learn more about Search Results ボード - Page 5

ポーと一緒に蹴りの効いた中間プロンプト

「このPoeチャットボットを試して、Midjourneyのプロンプトを洗練させ、(もしかしたら?)キックアスの画像生成結果を得てください!」

「データ資産のポートフォリオを構築および管理する方法」

「データ資産(または製品)−特定のユースケースのために簡単に利用できる準備済みのデータまたは情報のセット−は、データ管理の世界で話題です特定のユースケースを特定し、構築し、...」

「トランスフォーマーとサポートベクターマシンの関係は何ですか? トランスフォーマーアーキテクチャにおける暗黙のバイアスと最適化ジオメトリを明らかにする」

自己注意機構により、自然言語処理(NLP)は革新を遂げました。自己注意機構は、入力シーケンス内の複雑な関連を認識するためのトランスフォーマーデザインの主要な要素であり、関連トークンの関連性を評価することで、入力シーケンスのさまざまな側面に優先度を与えます。この他の技術は、強化学習、コンピュータビジョン、およびNLPアプリケーションにとって重要な長距離の関係を捉えるのに非常に優れていることが示されています。自己注意機構とトランスフォーマーは、GPT4、Bard、LLaMA、ChatGPTなどの複雑な言語モデルの作成を可能にし、驚異的な成功を収めています。 トランスフォーマーと最適化の風景におけるトランスフォーマーの暗黙のバイアスを説明できますか?勾配降下法で訓練された場合、注意層はどのトークンを選択し、組み合わせますか?ペンシルベニア大学、カリフォルニア大学、ブリティッシュコロンビア大学、ミシガン大学の研究者たちは、注意層の最適化ジオメトリを(Att-SVM)ハードマックスマージンSVM問題と結びつけることで、これらの問題に答えています。この問題では、各入力シーケンスから最良のトークンを分離して選択します。実験結果は、この形式が以前の研究に基づいて構築され、実際的に重要であり、自己注意のニュアンスを明らかにすることを示しています。 定理 1 以下では、入力シーケンスX、Z ∈ RT×d(長さT、埋め込み次元d)を使用して、基本的なクロスアテンションと自己注意モデルを調査しています。ここで、訓練可能なキー、クエリ、バリューマトリックスは、K、Q ∈ Rd×m、およびV ∈ Rd×vです。S( . )は、行ごとに適用されるソフトマックス非線形性を示しています。XQK⊤X⊤に対して適用されます。Z ← Xと設定することで、自己注意(1b)はクロスアテンション(1a)の特別なケースであることがわかります。メジャーな発見を明らかにするために、予測のためにZの初期トークンを使用することを検討します。ここで、zで表されます。 具体的には、次のように表される減少する損失関数l(): R Rによる経験的リスク最小化を扱っています。ラベルYi ∈ {−1, 1}および入力Xi ∈ RT×d、zi ∈…

「韓国のAI研究がマギキャプチャを紹介:主題とスタイルの概念を統合して高解像度のポートレート画像を生成するための個人化手法」

人々はよく、履歴書や結婚式などに適した高品質の肖像写真を作成するために、写真スタジオに通ったり、高価で時間のかかる画像編集手続きに従ったりする必要があります。ただ数枚の自撮り写真や参考写真を使用して、パスポートやプロフィール写真などの特定のスタイルで高品質の肖像写真を手に入れることができる状況を想像してみてください。この論文では、この手続きを自動化します。大規模なテキストから画像へのモデル(Stable DiffusionやImagenなど)の最近の進歩により、高品質でリアルな肖像写真が実現可能になりました。これらのモデルをカスタマイズする現在の研究では、利用可能なトレーニング写真を使用して特定の主題や美学を組み合わせることを目指しています。 この論文では、マルチコンセプトのカスタマイズチャレンジを目指しています。ソース素材と参考スタイルがそれぞれ学習された後、合成された出力が生成されます。テキストによる編集ではなく参考写真を使用することで、細かいアドバイスを提供することができ、この目的により適しています。しかし、以前のパーソナライズ技術の期待される結果にもかかわらず、リアリティを欠いた視覚的なものや商業的に実用的ではないものがしばしば現れます。これは、わずか数枚の写真で大規模なモデルのパラメータを更新しようとする際に一般的に起こります。組み合わせた概念のためのグラウンドトゥルース写真が不足しているマルチコンセプト生成では、異なる概念の人工的な混合や元の概念からの転換がより明白になるため、品質の低下はさらに顕著です。 人間のバイアスによる固有の問題により、肖像写真の制作において人工的なアーティファクトやアイデンティティの変化が明らかになります。この問題が最も顕著なのは、マジカプチャ(KAIST AIとSogang大学の研究者によるマルチコンセプトのカスタマイズアプローチ)がこれらの問題の解決策として提案されています。彼らのアプローチでは、合成プロンプト学習が使用され、合成プロンプトがトレーニングプロセスの一部として含まれ、ソース素材と参考スタイルの密な統合を強化しています。このために、補助損失と偽のラベルが使用されます。彼らはまた、Attention Refocusing損失を提案し、マスク付きの再構築目標と組み合わせることを提案しています。これは、情報の分離と推論中の情報の漏洩を避けるために重要な戦術です。マジカプチャは、定量的および定性的評価において他のベースラインよりも優れたパフォーマンスを発揮し、わずかな調整で他の非人間のオブジェクトにも適用できます。 以下は、彼らの論文の主な貢献です: • ソースと参考写真の特徴を正確に再現する高解像度の肖像写真を生成することができるマルチコンセプトのパーソナライズ技術を提供します。 • 入力画像から必要な情報を分離し、生成中に情報の漏洩を防ぐためのマスク付き再構築目標を持つ、新しいAttention Refocusing損失を提供します。 • ソース素材と参考スタイルを効果的に統合するために、補助損失と擬似ラベルを使用する構成プロンプト学習戦略を提供します。彼らの方法は、定量的および定性的評価において既存のベースライン手法を上回り、わずかな修正で非人間の物体の写真を作成するためにも適用できます。

物体検出リーダーボード

リーダーボードとモデルの評価の世界へようこそ。前回の投稿では、大規模言語モデルの評価について説明しました。今日は、異なるが同じくらい挑戦的な領域、つまり物体検出に乗り出します。 最近、オブジェクト検出のリーダーボードをリリースしました。このリーダーボードでは、ハブで利用可能な物体検出モデルをいくつかのメトリックに基づいてランキングしています。このブログでは、モデルの評価方法を実証し、物体検出で使用される一般的なメトリック、Intersection over Union (IoU)、Average Precision (AP)、Average Recall (AR)の謎を解き明かします。さらに重要なことは、評価中に発生する可能性のある相違点や落とし穴に焦点を当て、モデルのパフォーマンスを批判的に理解し評価できる知識を身につけることです。 すべての開発者や研究者は、正確に物体を検出し区別できるモデルを目指しています。私たちのオブジェクト検出リーダーボードは、彼らのアプリケーションのニーズに最も適したオープンソースモデルを見つけるための正しい場所です。しかし、「正確」とはこの文脈では本当に何を意味するのでしょうか?どのメトリックを信頼すべきでしょうか?それらはどのように計算されるのでしょうか?そして、さらに重要なことは、なぜいくつかのモデルが異なるレポートで相違した結果を示すことがあるのかということです。これらのすべての質問にこのブログで答えます。 では、一緒にこの探求の旅に乗り出し、オブジェクト検出リーダーボードの秘密を解き明かしましょう!もしも紹介を飛ばして、物体検出メトリックの計算方法を学びたい場合は、メトリックセクションに移動してください。オブジェクト検出リーダーボードを基に最良のモデルを選ぶ方法を知りたい場合は、オブジェクト検出リーダーボードセクションを確認してください。 目次 はじめに 物体検出とは メトリック 平均適合率(Average Precision)とは、どのように計算されるのか? 平均再現率(Average Recall)とは、どのように計算されるのか? 平均適合率と平均再現率のバリエーションとは? オブジェクト検出リーダーボード メトリックに基づいて最適なモデルを選ぶ方法は? 平均適合率の結果に影響を与えるパラメータは? 結論…

「コンピュータビジョン、言語モデルが見たものを理解するのをサポートする」

マサチューセッツ工科大学と他の研究者たちは、コンピュータ生成データを使用して、ビジョンと言語モデルが概念をより良く理解するのを支援する技術を開発しました

言語の壁を乗り越える シームレスなサポートのためにAmazon Translateでアプリケーションログを翻訳する

この投稿では、アプリケーションログが英語以外の言語で表示される場合に、開発者やサポートチームがデバッグやサポートを行う際に直面する課題について取り上げます提案される解決策は、CloudWatchの非英語ログを自動的にAmazon Translateを使用して翻訳し、解決策を環境に展開するためのステップバイステップのガイダンスを提供します

Amazon SageMakerドメインをVPCのみモードでサポートし、SageMaker Studioでの自動シャットダウンライフサイクル設定とTerraformでのSageMaker Canvasをサポートします

Amazon SageMakerのドメインは、SageMakerの機械学習(ML)環境をサポートしており、SageMaker StudioやSageMaker Canvasを含んでいますSageMaker Studioは、完全に統合された開発環境(IDE)であり、すべてのML開発ステップを実行するための特別なツールにアクセスできる単一のWebベースの視覚インターフェースを提供しますデータの準備からMLモデルの構築、トレーニング、展開まで、すべてのステップを行うことができます

🤗 Transformersにおけるネイティブサポートされた量子化スキームの概要

私たちは、トランスフォーマーでサポートされている各量子化スキームの利点と欠点を明確に示し、どれを選ぶべきかを判断するのに役立つ概要を提供することを目指しています。 現在、モデルの量子化は主に2つの目的で使用されています: 大きなモデルの推論をより小さなデバイスで実行すること 量子化モデルの上にアダプタを微調整すること 現時点で、2つの統合の取り組みが行われ、トランスフォーマーでネイティブにサポートされています:bitsandbytesとauto-gptqです。なお、🤗オプティマムライブラリでは他の量子化スキームもサポートされていますが、このブログ投稿では対象外です。 サポートされている各スキームの詳細については、以下で共有されているリソースのいずれかをご覧ください。また、ドキュメントの適切なセクションもご確認ください。 また、以下で共有されている詳細は、PyTorchモデルにのみ有効であり、TensorflowおよびFlax/JAXモデルについては現在のところ対象外です。 目次 リソース bitsandbyesとauto-gptqの利点と欠点 速度ベンチマークの詳細 結論と最終的な言葉 謝辞 リソース GPTQブログ投稿 – GPTQ量子化方法と使用方法について概説しています。 bitsandbytes 4ビット量子化ブログ投稿 – このブログ投稿では4ビット量子化と効率的なファインチューニング手法であるQLoRaについて紹介しています。 bitsandbytes 8ビット量子化ブログ投稿 –…

「AI Time JournalがeBook「2023年の顧客サービスとサポートにおけるAIのトレンド」を発表 – アシスタンスの進化に関する先駆的なインサイト」

「アメリカ、サンフランシスコ─人工知能(AI)の分野における知識交換とリーダーシップの促進を目的とした主要な出版物であるAI Time Journalは、最新のeBook「AI in Customer Service and Support Trends 2023」のリリースを喜んで発表しますこの画期的なコンピレーションは、アシスタンスの進化に関する先駆的な洞察を提供していますAI Time Journalが発行するeBook「AI in Customer Service and Support Trends 2023」についての詳細はこちらをご覧ください」

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us