Learn more about Search Results ス - Page 5
- You may be interested
- 3つの難易度レベルでベクトルデータベース...
- 「オートジェンへの参入:マルチエージェ...
- 「フィーチャー/トレーニング/推論パイプ...
- アカデミックパートナーがスタートアップ...
- 「2023年のトップ5 AIデータセキュリティ...
- UC San Diegoの研究者がTD-MPC2を発表:多...
- ハスデックスとステーブルディフュージョ...
- データサイエンティストのための必須ガイ...
- 「OpenAI、Microsoft、Googleが協力してAI...
- 埋め込みの類似検索:データ分析の画期的...
- テキストをベクトルに変換する:TSDAEによ...
- 「イノベーションと持続可能性のバランス...
- 基礎モデルは人間のようにデータにラベル...
- 「Googleのアルゴリズムによって、FIDO暗...
- 「AIがPowerPointと出会う」
ヒストグラムとカーネル密度推定の理解
ヒストグラムは、数値データの頻度を視覚化するグラフですデータサイエンスや統計学でよく使用され、データセットの分布の大まかな推定を行うために使用されますカーネル密度...
マーク外:AI進捗競争におけるメトリクスゲーミングの落とし穴
「共産主義のネイル工場から資本主義のボット戦まで、この記事では、虚偽の基準や狭視的なハイプサイクルが意味のある進歩を阻害する永遠のリスクに焦点を当てています」
AIの物体認識をどのように進化させることができるのか? このAIの論文は、強化された画像と動画の分析のための普遍的な物体レベルの基礎モデルGLEEを紹介します
画像やビデオの物体認識は、機械に視覚世界を解読する力を与えます。仮想の探偵のように、コンピュータビジョンシステムはピクセルをスキャンし、デジタル体験のキャンバスに描かれた多くの物体を認識、追跡、理解します。このディープラーニングの力による技術的な能力は、自動運転車が都市の風景をナビゲートすることから、視覚的なエンカウンターにより多くの知能を追加する仮想アシスタントまで、変革的な応用の扉を開きます。 中国科学技術大学、字節跳動、ジョンズ・ホプキンズ大学の研究者たちは、画像とビデオの物体認識のための多目的モデルGLEEを紹介しています。GLEEは、物体の位置特定と識別に優れており、タスクに固有の適応なしでさまざまなタスクに対して優れた汎化性能を示します。大規模言語モデルの統合も可能であり、多モーダル研究のための普遍的な物体レベルの情報を提供します。さまざまなデータソースからの知識の取得能力により、効率が向上し、異なる物体認識タスクの処理能力が向上します。 GLEEは、画像エンコーダ、テキストエンコーダ、ビジュアルプロンプタを統合し、多モーダル入力処理と一般化物体表現予測を行います。Objects365、COCO、Visual Genomeなどのさまざまなデータセットで訓練されたGLEEは、オープンワールドのシナリオで物体の検出、セグメンテーション、トラッキング、グラウンディング、識別を行うための統一されたフレームワークを使用します。動的なクラスヘッドを持つMaskDINOに基づいたオブジェクトデコーダは、予測のために類似性計算を使用します。物体検出とインスタンスセグメンテーションでプリトレーニングされた後、結合トレーニングにより、さまざまな下流の画像とビデオのタスクにおいて最先端のパフォーマンスを実現します。 GLEEは、特定のタスクに特化した適応なしで多様な下流のタスクに対応する傑出した汎化性能と拡張性を示しました。物体検出、インスタンスセグメンテーション、グラウンディング、マルチターゲットトラッキング、ビデオインスタンスセグメンテーション、ビデオオブジェクトセグメンテーション、インタラクティブセグメンテーションとトラッキングなど、さまざまな画像とビデオのタスクで優れたパフォーマンスを発揮します。GLEEは他のモデルに統合された場合でも最先端のパフォーマンスを維持し、その表現の多様性と効果的な性能を示します。ゼロショットの汎化性能は、自動的にラベル付けされた大量のデータを組み込むことでさらに向上します。また、GLEEは基盤モデルとしての役割も果たします。 https://arxiv.org/abs/2312.09158 GLEEは、現在のビジュアル基盤モデルの限界を克服し、正確かつ普遍的な物体レベルの情報を提供する画期的な一般物体基盤モデルです。GLEEは多様な物体中心のタスクに堪能であり、ゼロショットの転送シナリオでも特に優れた汎化性能を示します。さまざまなデータソースを使用して一般的な物体表現を組み込むことで、スケーラブルなデータセットの拡張とゼロショットの能力を向上させます。モデルは複数のデータソースをサポートしており、追加の注釈を容易に組み込むことで、さまざまな下流のタスクにおいて最先端のパフォーマンスを実現し、既存のモデルを凌駕します。 これまで行われた研究の範囲と将来の研究の方向は、以下に焦点を当てることができます: 複雑なシナリオや長尾分布を持つチャレンジングなデータセットを扱うGLEEの能力を拡大するための継続的な研究です。 特化したモデルを統合することで、GLEEの普遍的な物体レベル表現を活用し、マルチモーダルなタスクの性能を向上させることを目指しています。 DALL-Eなどのモデルと同様に、広範な画像キャプションのペアをトレーニングすることで、GLEEのテキスト指示に基づいた詳細な画像コンテンツの生成の可能性を探っています。 オブジェクトレベルのタスクへの応用範囲を広げるために、GLEEの物理的な文脈を組み込んだオブジェクトレベルの情報を強化しています。 インタラクティブなセグメンテーションとトラッキングの機能のさらなる開発は、さまざまなビジュアルプロンプトの探索やオブジェクトセグメンテーションのスキルの改善を含みます。
「EPFLとAppleの研究者が4Mをオープンソース化:数十のモダリティとタスクにわたるマルチモーダルな基盤モデルの訓練のための人工知能フレームワーク」
大量の自然言語処理(NLP)タスクを広範に扱える大型言語モデル(LLM)をトレーニングすることは、より人気があります。NLPでこれらのモデルが優れた成功を示しているにもかかわらず、ビジョンのために同様に柔軟でスケーラブルなモデルを作成する必要があります。ビジョンのスケーラビリティと多機能性には、多くの入力モダリティと出力タスクを管理する能力が不可欠です。 ビジョンモデルは、写真、3D、テキストを含むさまざまな感覚入力を処理し、さまざまなタスクを実行する必要があります。ビジョンに関しては、単一の目的でRGB画像でのトレーニングは、生のテキストに対する言語モデリングと同じ結果を生みませんでした。その結果、トレーニングではさまざまなモダリティとタスクを活用する必要があります。 データ、アーキテクチャ、トレーニングの目的は、望ましいビジョン基盤モデルの属性を持つモデルを構築する際に考慮すべき3つの重要なスケーラビリティ要素です。データのスケーラビリティは、性能を向上させるためにより多くのトレーニングサンプルを活用できる能力を指します。アーキテクチャの観点では、性能が増加するにつれてモデルサイズを大きくし、トレーニング時に安定性を保つことを意味します。最後に、スケーラブルなトレーニング目標は、計算コストが急増することなく、増加するモダリティの数に効率的に対応できる必要があります。 スイス連邦工科大学ローザンヌ校(EPFL)とAppleの新しい研究は、これらの3つの領域すべてでスケーラビリティを目指し、さまざまな入力タイプと互換性のある方法を提案しています。 これらの障壁を乗り越えるため、チームは、マルチモーダルなマスクされたモデリングのゴールを持つ単一の統合トランスフォーマーエンコーダーデコーダーをトレーニングする戦略を提案しています。4Mは「Massively Multimodal Masked Modeling」の略で、このアプローチの様々なモダリティに拡張可能な能力を強調しています。このアプローチは、マスクされたモデリングとマルチモーダル学習の最良の特徴を組み合わせています。 強力なクロスモーダル予測コーディング能力と共有シーン表現 反復サンプリングにより、モデルを生成タスクに使用できる 事前トレーニングの目的は、効果的に豊かな表現を学ぶことです 重要なのは、4Mがこれらの利点を保ちながら、多くのプロセスを通じて効率を保つことです。モダリティ固有のトークナイザーを使用することで、モダリティをさまざまな形式でセットや連続の離散トークンに変換し、テキスト、境界ボックス、画像、ニューラルネットワークの特徴など、さまざまなモダリティで単一のトランスフォーマーをトレーニングできます。これにより、表現領域が統一されます。タスク固有のエンコーダーやヘッドはもはや必要ないため、このトークナイゼーションアプローチにより、パラメータ共有が可能になり、互換性、スケーラビリティ、共有性が向上します。 また、4Mは、多くのモダリティで作業するにもかかわらず、入力と目標のマスキングを活用して効率的にトレーニングすることができます。これには、トークンの小さなサブセットをランダムに選択してモデルの入力として使用し、別の小さなサブセットを目標として使用する必要があります。スケーラブルなトレーニング目標を達成するためには、入力トークンと目標トークンの数をモダリティの数から切り離す必要があります。これにより、モダリティの数が増えても計算コストが急速に増加することを防げます。CC12Mや他の利用可能な単一モーダルまたはテキスト-画像ペアデータセットを使用して、強力な擬似ラベリングネットワークを使用してモーダルに整合したバインディングデータを作成します。 この擬似ラベリング手法により、異なる大規模データセットでのトレーニングが可能になります。4Mモデルは、出発点でさまざまな重要な視覚タスクで優れた結果を出すだけでなく、未知のダウンストリームタスクや入力モダリティでも注目すべき結果を達成するために微調整することができます。 さらに、どのモダリティでも条件付きで操作可能な操作可能な生成モデルをトレーニングするために、マルチモーダルなマスクされたモデリングゴールを利用する必要があります。これにより、ユーザーの意図やさまざまなマルチモーダルな編集タスクの多様な表現が可能になります。その後、4Mのパフォーマンスに影響を与えるパラメータを徹底的に分析します。この包括的な分析と、この手法の容易さと汎用性により、4Mは多くのビジョンタスクと今後の開発に大いに期待されます。
「機械学習アルゴリズムとGAN」
「GANとさまざまな機械学習アルゴリズムについて詳しく学びましょう」(GANとさまざまなきかいがくしゅうアルゴリズムについてくわしくまなびましょう)
システムデザインシリーズ:ゼロから高性能データストリーミングシステムを構築するための究極のガイド!
「データストリーミング」は非常に複雑な印象を受けますし、「データストリーミングパイプライン」なんてなおさらです専門用語に囚われる前に、まずはその意味について話す前に、理由から始めましょう...
「初めてのデータサイエンスプロジェクトに打ち勝つための6つの初心者向けの素晴らしいヒント」
「経験がない状態で初めてのデータサイエンスプロジェクトを始める方法を知ることは難しいかもしれませんここでインサイトを得て、データサイエンスのデビューを成功させましょう!」
私はスポティファイで3回の大量解雇を乗り越えました、ここで学んだこと
数年間の努力の末、ついに夢の仕事に就くことを想像してみてくださいあなたは世界の頂点に立ち、人生を謳歌し、安定感を感じていますしかし、どこからともなくリストラが襲いかかりますこれは単なる仮説ではありません...
「ヴォン・グームと出会う 大規模な言語モデルにおけるデータ毒化に対する革新的なAIアプローチ」
データの毒化攻撃は、訓練データセットに誤ったデータを注入することで機械学習モデルを操作します。モデルが実世界のデータに触れると、不正確な予測や意思決定につながる可能性があります。データの毒化攻撃はLLMに対して脆弱になり得るため、対象のプロンプトや関連概念に対する応答を歪めることがあります。この問題に対処するために、Del Complexが行った研究は、VonGoomという新しい手法を提案しています。この手法は、目的を達成するために数百から数千の戦略的な毒入力のみを必要とします。 VonGoomは、数百から数千の戦略的に配置された入力のみで実現可能であることを示し、数百万の毒サンプルが必要であるという考えに挑戦します。VonGoomは、訓練中にLLMを誤導するために微妙な操作を施した見かけ上無害なテキスト入力を作り出し、さまざまな歪みを導入します。それは、LLMトレーニングで使用される数億のデータソースを毒化しています。 この研究では、LLMがデータの毒化攻撃に対してどのように脆弱であるかを探求し、LLMに対するプロンプト固有の毒化攻撃の新しい手法であるVonGoomを紹介しています。一般的な全範囲のエピソードとは異なり、VonGoomは特定のプロンプトやトピックに焦点を当てています。訓練中にLLMを誤導するために微妙な操作を施した見かけ上無害なテキスト入力を作り出し、微妙なバイアスから明白なバイアス、誤情報、概念の破壊まで、さまざまな歪みを導入します。 VonGoomはLLMに対するプロンプト固有のデータの毒化の手法です。訓練中にモデルを誤導し、学習した重みを乱すために微妙な操作を施した見かけ上無害なテキスト入力を作り出します。VonGoomは微妙なバイアス、明白なバイアス、誤情報、概念の破壊など、さまざまな歪みを導入します。この手法は、クリーンネイバーの毒データとガイド付きの摂動といった最適化技術を使用し、さまざまなシナリオで有効性を示しています。 約500〜1000の少数の毒入力を注入すると、ゼロから訓練されたモデルの出力が大幅に変わることが示されました。事前学習済みモデルの更新を含むシナリオでは、750〜1000の毒入力を導入することでモデルの対象概念への応答が効果的に妨害されました。 VonGoom攻撃は、意味的に変化させられたテキストサンプルがLLMの出力に影響を与えることを示しました。その影響は関連するアイデアにまで及び、毒性サンプルの影響が意味的に関連する概念に伝わる「ブリードスルー効果」が生まれました。比較的少数の毒入力での戦略的な実装により、LLMが洗練されたデータの毒化攻撃に対して脆弱であることが明らかにされました。 まとめると、行われた研究は以下の点で要約されます: VonGoomは、LLMを訓練中に誤導するためのデータ操作手法です。 この手法は、モデルを誤導する微妙な変更をテキスト入力に加えることで実現されます。 小規模な入力でのターゲット攻撃は、目標を達成するために実現可能で効果的です。 VonGoomは、バイアス、誤情報、概念の破壊など、さまざまな歪みを導入します。 この研究では、一般的なLLMデータセット内の特定の概念の訓練データの密度を分析し、操作の機会を特定しています。 この研究は、LLMがデータの毒化攻撃に対して脆弱であることを強調しています。 VonGoomは、様々なモデルに大きな影響を与え、この分野に広範な影響を与える可能性があります。
スタンフォード研究者がGLOWとIVESを使用して、分子ドッキングとリガンド結合位姿の予測を変革しています
ディープラーニングは、スコアリング関数の改善により、分子ドッキングの向上の可能性を持っています。現在のサンプリングプロトコルは、正確なリガンド結合ポーズを生成するために事前情報が必要であり、スコアリング関数の正確さが制限されています。GLOWとIVESという2つの新しいプロトコルは、スタンフォード大学の研究者によって開発され、この課題に対応し、ポーズのサンプリング効果を向上させることを示しています。AlphaFoldで生成されたタンパク質構造を含むさまざまなタンパク質構造でのベンチマークテストにより、これらの手法の妥当性が確認されています。 分子ドッキングにおけるディープラーニングは、しばしば剛体タンパク質ドッキングデータセットに依存しており、タンパク質の柔軟性を無視しています。一方、柔軟ドッキングはタンパク質の柔軟性を考慮していますが、精度が低い傾向があります。GLOWとIVESは、これらの制限に対応する高度なサンプリングプロトコルであり、特に動的結合ポケットでベースラインメソッドを常に上回っています。これは、タンパク質リガンドドッキングにおけるリガンドポーズのサンプリングを改善するために重要であり、ディープラーニングベースのスコアリング関数の向上に重要です。 分子ドッキングは、薬物探索においてタンパク質結合サイトへのリガンド配置を予測します。従来の方法は正確なリガンドポーズの生成に課題を抱えています。ディープラーニングは正確性を向上させることができますが、効果的なポーズのサンプリングに依存しています。GLOWとIVESは、チャレンジングなシナリオに対してサンプルを改善し、正確性を向上させるための進んだサンプリングプロトコルです。AlphaFoldで生成された未リガンド化または予測されたタンパク質構造に適用可能であり、キュレーションされたデータセットとオープンソースのPythonコードも提供しています。 GLOWとIVESは、分子ドッキングのための2つのポーズサンプリングプロトコルです。GLOWはソフト化された分散力ポテンシャルを利用してリガンドポーズを生成し、IVESは複数のタンパク質構造を組み込むことで正確性を向上させます。ベースラインメソッドとのパフォーマンス比較により、GLOWとIVESの優位性が示されています。クロスドッキングケースにおける正しいポーズの割合を測定するテストセットの評価は、IVESの効率において重要なシードポーズの品質を示しています。 GLOWとIVESは、リガンドポーズのサンプリングにおいてベースラインメソッドを上回る正確性を持ち、チャレンジングなシナリオやAlphaFoldベンチマークにおいて顕著なタンパク質の構造変化にも優れています。テストセットの評価により、正しいポーズのサンプリング確率の優越性が確認されています。IVESは複数のタンパク質構造を生成することで、タンパク質構造の幾何学的なディープラーニングにおいて、より少ない構造でSchrodinger IFD-MDと同様のパフォーマンスを達成します。GLOWとIVESによって生成された5,000のタンパク質リガンドペアのリガンドポーズデータセットは、ディープラーニングベースのスコアリング関数の開発と評価において貴重なリソースとなります。 https://arxiv.org/abs/2312.00191 結論として、GLOWとIVESは、基本的な技術よりも効果的な2つのポーズサンプリング方法であり、特に困難なシナリオとAlphaFoldベンチマークにおいて優れた性能を発揮しています。IVESでは複数のタンパク質構造が生成されるため、幾何学的ディープラーニングに非常に有利です。また、GLOWとIVESが提供する5,000のタンパク質リガンドペアのリガンドポーズを含むデータセットは、分子ドッキングのディープラーニングベースのスコアリング関数に取り組んでいる研究者にとって貴重な資源です。
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.