Learn more about Search Results コンポーネント - Page 5
- You may be interested
- 「バイオメトリクスをサイバーセキュリテ...
- 「GPT-4の隠れた回帰の時間経過の定量化」
- メルティングポット:マルチエージェント...
- AIはデータ専門家の役割にどのような影響...
- スタンフォード大学の研究者が、大規模言...
- 「LLMエンジニアとしてChatGPTを使ってプ...
- 「機械学習モデルからの情報漏洩を分析し...
- 「ODSC West Bootcamp Roadmapのご紹介 ...
- 「Amazon SageMakerを使用して、クラシカ...
- 「比喩的に言えば、ChatGPTは生きている」
- 2024年に探すべき6つのリモートAIジョブ
- データの変形:データザウルス・ダズンを...
- 「オフィスの空気はどれほど安全ですか?...
- 「物理学と流体力学に応用されたディープ...
- 「ジェミニ発表ビデオでグーグルが誤解を...
「Mixtral 8x7Bについて知っていること ミストラルの新しいオープンソースLLM」
「ミストラルAIは、オープンソースのLLM(語彙・言語モデル)の領域で限界に挑戦する最も革新的な企業の一つですミストラルの最初のリリースであるミストラル7Bは、市場で最も採用されているオープンソースのLLMsの一つとなりましたA...」
「チャットボットとAIアシスタントの構築」
この記事は、自然言語処理(NLP)とチャットボットフレームワークの総合ガイドを紹介します詳しくは、学んでください!
「ベクターデータベースは、生成型AIソリューションの未来をどのように形作るのか?」
紹介 生成AIの急速に進化する風景において、ベクトルデータベースの重要な役割がますます明らかになってきました。本記事ではベクトルデータベースと生成AIソリューションとのダイナミックな相乗効果について探求し、これらの技術的基盤が人工知能の創造性の将来を形作っているかを紐解きます。革新的なAIソリューションの最先端にもたらすベクトルデータベースの変革的な影響を解き放つため、この強力な連携の複雑さを旅してください。 学習目標 この記事では以下のベクトルデータベースの側面を理解するのに役立ちます。 ベクトルデータベースの重要性とその主要な構成要素 従来のデータベースとのベクトルデータベースの詳細比較 応用の観点からのベクトル埋め込みの探求 Pineconeを使用したベクトルデータベースの構築 langchain LLMモデルを使用したPineconeベクトルデータベースの実装 この記事はData Science Blogathonの一部として公開されました。 ベクトルデータベースとは何ですか? ベクトルデータベースとは、空間に格納されたデータの集合の形式です。しかし、ここでは数学的な表現で格納されているため、AIモデルが入力を覚えるのに便利であり、オープンAIアプリケーションが認知検索、推奨、テキスト生成を使用してさまざまなユースケースで活用できるようになっています。データの格納と検索は「ベクトル埋め込み」と呼ばれます。また、これは数値配列形式で表されます。トラディショナルなデータベースと比べて、非常に大規模でインデックス化された機能を持つAIの観点での検索ははるかに容易です。 ベクトルデータベースの特徴 これらのベクトル埋め込みのパワーを活用し、巨大なデータセット全体でのインデックス作成と検索を実現します。 あらゆるデータ形式(画像、テキスト、データ)と互換性があります。 埋め込み技術と高度なインデックス化された機能を採用しているため、与えられた問題のデータと入力の完全なソリューションを提供できます。 ベクトルデータベースは、数百の次元を含む高次元ベクトルを通じてデータを整理します。これらは非常に迅速に構成できます。 各次元は、それが表しているデータオブジェクトの特定の特徴または属性に対応しています。 従来のデータベースとベクトルデータベースの比較 図は従来のデータベースとベクトルデータベースのハイレベルなワークフローを示しています。 フォーマルなデータベースのやり取りはSQLステートメントを通じて行われ、データは行ベースおよび表形式で格納されます。…
「AWSでMLOpsアーキテクチャを設計する方法」
ガートナーの調査によると、機械学習(ML)プロジェクトのうち、概念実証(POC)から本番まで進展するのはわずか53%ですしばしば戦略的目標と実際の成果の間にズレが生じています
「エキスパートのミックスについて解説」
ミクストラル8x7Bのリリース(発表、モデルカード)により、トランスフォーマのクラスがオープンAIコミュニティで最も話題となっています。それがエキスパートの混合(Mixture of Experts、略してMoEs)です。このブログ記事では、MoEsの構成要素、トレーニング方法、および推論時の考慮事項について見ていきます。 さあ、深く掘り下げてみましょう! 目次 ミクストラルとは何ですか? MoEsの簡潔な歴史 スパース性とは何ですか? MoEsのトークンのロードバランシング MoEsとトランスフォーマ スイッチトランスフォーマ ルータZ損失によるトレーニングの安定化 エキスパートは何を学ぶのですか? エキスパートの数をスケーリングすると事前トレーニングにどのような影響を与えるのですか? MoEsの微調整 スパースMoEsと密なモデルの使用時期はいつですか? MoEsを効果的に活用するために エキスパート並列処理 能力係数と通信コスト サービングテクニック 効率的なトレーニング オープンソースのMoEs ワークのエキサイティングな方向性 いくつかのリソース…
グーグルのマルチモーダルAIジェミニ-技術の深い潜水
「ジェミニを探索してくださいGoogleの高度なマルチモーダルAIモデルは、テキスト、画像、音声、動画など、さまざまな能力を持ち、クロスモーダルな関心を革新的に結集していますジェミニがGoogleのエコシステムに統合され、AIの新たな基準を設定していることを発見してください」
メタAI研究者が生産準備完了の強化学習AIエージェントライブラリ「Pearl」をオープンソース化
強化学習(RL)は、エージェントが適切なアクションを取り、報酬を最大化するために学習する機械学習のサブフィールドです。強化学習では、モデルは経験から学習し、最適なアクションを特定します。近年、RLは大幅に進化し、自律走行車からロボティクス、さらにはゲーミングまで、幅広い分野で応用されています。また、RLシステムの容易な開発を支援するライブラリの開発も大きく進歩しています。そのようなライブラリの例にはRLLib、Stable-Baselines 3などがあります。 成功したRLエージェントを作成するには、遅延報酬やその他の影響などの問題に対処する必要があります。また、利用と探索のバランスを見つけたり、安全性やリスク要件などの追加パラメータを考慮することで、破滅的な状況を回避する必要があります。現在のRLライブラリは非常に強力ですが、これらの問題を十分に解決していません。そのため、Metaの研究者が「Pearl」というライブラリをリリースしました。このライブラリは上記の問題を考慮し、ユーザーが実世界のアプリケーションに対して多目的なRLエージェントを開発できるようにします。 PearlはPyTorchに基づいて構築されており、GPUと分散トレーニングとの互換性があります。また、テストと評価のためのさまざまな機能も提供しています。Pearlの主なポリシーラーニングアルゴリズムはPearlAgentと呼ばれ、知識の探索、リスク感度、安全制約などの特徴があり、オフラインとオンラインの学習、安全学習、履歴の要約、再生バッファなどのコンポーネントがあります。 効果的なRLエージェントは、オフライン学習アルゴリズムを使用してポリシーを学習し、評価できるようにする必要があります。さらに、オフラインとオンラインのトレーニングには、データ収集とポリシー学習のためのセキュリティ対策が必要です。それに加えて、エージェントはさまざまなモデルを使用して状態表現を学習し、履歴を状態表現に要約して望ましくないアクションをフィルタリングする能力も持っている必要があります。最後に、エージェントは再生バッファを使用してデータを効率的に再利用し、学習効率を向上させる必要もあります。Metaの研究者は、これらのすべての機能をPearl(特にPearlAgent)の設計に取り入れ、RLエージェントの設計において多目的かつ効果的なライブラリとしての潜在能力を備えています。 研究者は、モジュール性、知識の探索、安全性などの要素を評価しながらPearlを既存のRLライブラリと比較しました。Pearlは、これらの機能をすべて実装し、必要な機能を組み込んでいない競合他社とは区別されました。たとえば、RLLibはオフラインRL、履歴の要約、再生バッファをサポートしていますが、モジュール性と知識の探索をサポートしていません。同様に、SB3はモジュール性、安全な意思決定、およびコンテキストバンディットを組み込んでいません。これが研究者によって注目される他のライブラリとの違いです。 Pearlはまた、リコメンダーシステム、オークション入札システム、クリエイティブセレクションなど、さまざまな実世界のアプリケーションをサポートする予定です。これにより、異なるドメインでの複雑な問題を解決するための有望なツールとなります。RLは近年、大幅な進歩を遂げていますが、実世界の問題を解決するための実装は依然として困難です。しかし、Pearlは知識の探索や安全性、履歴の要約などの独自の特徴を持つことで、RLの広範な統合において貴重なツールとしての潜在能力を持っています。
ジョンズ・ホプキンス大学とUCサンタクルーズ校の研究者が、画像ベースのAI学習の画期的な進歩であるD-iGPTを発表しました
“` 自然言語処理(NLP)は、GPTシリーズなどの大規模言語モデル(LLMs)の導入により、さまざまな言語的なタスクに対して新たなパフォーマンス基準を確立する変革期に入りました。自己回帰前処理は、モデルにシーケンス内で最も可能性の高いトークンを予測することを教えることで、この驚異的な達成に影響を与える主要な要素の1つです。この基本的な技術により、モデルは構文と意味の複雑な相互作用を吸収し、人間のように言語を理解する卓越した能力を持つことができます。自己回帰前処理は、NLPに加えてコンピュータビジョンにも大きく貢献しています。 コンピュータビジョンにおいて、自己回帰前処理は最初は成功しましたが、後続の開発によりBERTスタイルの前処理に有利な鮮明なパラダイム変化が示されました。この移行は特に注目に値しますが、最初のiGPTの結果からは、自己回帰およびBERTスタイルの前処理がさまざまなタスクで同様のパフォーマンスを発揮することが示されました。ただし、視覚表現学習における効果の高さから、その後の研究ではBERTスタイルの前処理が優先されるようになりました。例えば、MAEはランダムにマスクされたピクセルの値を予測するだけの視覚表現学習に対してスケーラブルなアプローチを示しています。 本研究では、ジョンズ・ホプキンス大学とUCサンタクルーズの研究チームがiGPTを再検討し、自己回帰前処理が広範に適用された場合に高度な視覚学習者を生み出すことができるかどうかを問いました。その過程には2つの重要な変更が組み込まれています。まず、研究チームは画像が自然にノイズや冗長性を持つため、BEiTを使用して写真を意味的なトークンにトークン化します。この変更により、自己回帰予測の焦点がピクセルから意味的なトークンにシフトし、さまざまな画像領域の相互作用のより洗練された理解が可能になります。さらに、研究チームは生成デコーダに識別デコーダを追加し、次の意味的なトークンを自己回帰的に予測します。 視覚領域内の意味的なトークンの予測は、この追加のコンポーネントの責任です。さらに興味深いことに、CLIPのように識別的にトレーニングされたモデルは、この前処理経路に最適な意味的な視覚トークンを提供します。研究チームはこの改良された方法をD-iGPTと呼んでいます。彼らの提案されたD-iGPTの効率性は、さまざまなデータセットとタスクで行われた包括的なテストによって確認されています。関連する唯一のデータセットとしてImageNet-1Kを使用し、彼らのベースサイズのモデルは、従来の最先端モデルを0.6%上回る86.2%のトップ-1分類精度を達成しました。 さらに、彼らの大規模モデルは、3600万の公開データセットで89.5%のトップ-1分類精度を達成します。D-iGPTは、パブリックデータセットで以前の最先端トレーニングと同等のパフォーマンスを発揮しますが、トレーニングデータとモデルのサイズがはるかに少なくなります。同じ前処理とファインチューニングのデータセットを使用して、研究チームはD-iGPTをセマンティックセグメンテーションにも適用し、MAEと比較して優れたパフォーマンスを発揮することを明らかにしました。 “`
「GoogleがCloud TPU v5pとAIハイパーコンピューターを発表:AI処理能力の飛躍」
Googleは、AIハイパーコンピュータと呼ばれる画期的なスーパーコンピューターアーキテクチャと共に、テンサープロセッシングユニットのリリースで波紋を広げました。これらの革新的なリリースは、リソース管理ツールのダイナミックワークロードスケジューラーとともに、組織のAIタスクの処理における重要な前進を示しています。 直近の11月にリリースされたv5eに継ぎ、Googleの最もパワフルなTPUであるCloud TPU v5pは、従来の設計とは異なり、性能志向のデザインを採用しており、処理能力の大幅な向上を約束しています。ポッドごとに8,960個のチップを装備し、チップ間のインターコネクションスピードは4,800 Gbpsを誇ります。このバージョンは、前のTPU v4と比べて倍のFLOPSと高帯域幅メモリ(HBM)の3倍の印象的な増加を提供します。 パフォーマンスへの注力が大きな成果をもたらし、Cloud TPU v5pは、大規模なLLMモデルのトレーニング時にTPU v4と比べて驚異的な2.8倍の速度向上を実証しています。さらに、第2世代のSparseCoresを活用することで、v5pは前任者に比べて組み込み密なモデルのトレーニング速度が1.9倍速くなります。 一方、AIハイパーコンピューターは、スーパーコンピューターアーキテクチャの革新的な存在となっています。最適化されたパフォーマンスハードウェア、オープンソースソフトウェア、主要な機械学習フレームワーク、そして適応的な消費モデルを組み合わせています。AIハイパーコンピューターは、単一のコンポーネントの補強ではなく、協力的なシステム設計を活用して、トレーニング、微調整、そしてサービスのドメイン全体でAIの効率と生産性を向上させています。 この高度なアーキテクチャは、超大規模なデータセンターインフラストラクチャをベースに、厳密に最適化された計算、ストレージ、ネットワークデザインを特徴としています。さらに、JAX、TensorFlow、PyTorchなどの機械学習フレームワークをサポートするオープンソースソフトウェアを介して関連するハードウェアへのアクセスも提供しています。この統合は、Multislice TrainingやMultihost Inferencingなどのソフトウェアと、Google Kubernetes Engine(GKE)やGoogle Compute Engineとの深い統合にも及びます。 AIハイパーコンピューターを特筆するのは、AIタスクに特化した柔軟な消費モデルです。革新的なダイナミックワークロードスケジューラーやCommitted Use Discounts(CUD)、オンデマンド、スポットなどの伝統的な消費モデルを導入しています。このリソース管理およびタスクスケジューリングプラットフォームは、Cloud TPUとNvidia GPUをサポートし、ユーザーの支出を最適化するために必要なすべてのアクセラレーターのスケジュールを効率化します。 このモデルでは、Flex…
CMUとプリンストンの研究者がマンバを発表:多様なモードのディープラーニングアプリケーションにおいてトランスフォーマーの効率を超えるSSMアーキテクチャの画期的な進展
現代の機械学習において、ファウンデーションモデルは、大量のデータで事前に学習され、その後に下流のタスクに対して改変されることが成功のパラダイムとなっています。シーケンスモデルは、言語、画像、音声、オーディオ、時系列、ゲノムなど、様々なドメインからの任意のシーケンス入力に対応するもので、これらのファウンデーションモデルの基礎となっています。このアイデアは特定のモデル設計には依存していませんが、トランスフォーマーとその中心となるアテンション層は、ほとんどの現代のファウンデーションモデルの基盤となっています。セルフアテンションは、情報をコンテキストウィンドウ内で緊密にルーティングすることで、複雑な事実を表現することができるため、効果的です。 しかし、この性質には2つの基本的な欠点があります。1つはウィンドウの長さに関する二次的なスケーリング、もう1つは制限されたウィンドウの外部の情報を記述することができないことです。これらの欠点を解決するために、より効果的なアテンションに関連する戦略についての研究が大量に行われていますが、それらはアテンションの成功をもたらす要素と同じ品質を犠牲にすることがしばしばあります。これらのバリエーションが異なるドメイン全体でスケールで実験的に成功したという証拠はまだありません。構造化された状態空間シーケンスモデルは、新しく興味深いシーケンスモデリングアーキテクチャの一族です。これらのモデルは、従来の状態空間モデルから影響を受けており、畳み込みおよび再帰型ニューラルネットワークのハイブリッドと見なすことができます。 これらのモデルは、シーケンスの長さに対して線形またはほぼ線形なスケーリングを持ち、再帰または畳み込みによって非常に高速に計算することができます。また、ロングレンジアリーナなどのベンチマークを支配しており、特定のデータモダリティにおける長距離の相互依存関係のモデリングのためのツールとなっています。多くのSSM(構造化状態空間モデル)のバリエーションが、連続的な信号データを必要とする音声やビジョンなどの領域で効果を示していますが、テキストのような離散で情報密度の高い素材のモデリングにはまだ成功していません。 カーネギーメロン大学とプリンストン大学の研究チームは、従来の研究をさまざまな側面で拡張し、シーケンスの長さとの線形関係を保ちながらトランスフォーマーのようなモデリング能力を向上させる選択された状態空間モデルの新しいカテゴリを提案しています。 選択メカニズム。まず、以前のモデルの重要な欠点を指摘します。それは、入力に応じてデータを効果的に選択することができないことです。研究チームは、重要な合成タスク(セレクティブコピーと誘導ヘッドなど)から得られた理解に基づいてSSMパラメータを入力によってパラメータ化することにより、簡単な選択プロセスを提供しています。これにより、モデルは不要なデータを排除しながら関連する情報を永続的に保持することができます。 ハードウェア対応コード。この簡単な修正は、モデルの計算を技術的に挑戦します。以前のSSMモデルは、計算が効率的に行われるために入力や時間の不変である必要がありました。異なるレイヤー間でのGPUメモリ階層のIOアクセスを防ぐために、ハードウェア対応アプローチを使用してモデルをスキャンに基づいて再帰的に計算します。ただし、拡張された状態は具現化されません。結果として得られる実装は、現在のハードウェア上の以前の技術よりも高速であり、理論的な設計の構築です。 アーキテクチャ:特定の状態空間を組み込んだ簡単で均一なアーキテクチャ設計を提供するために、以前のSSMアーキテクチャの設計とトランスフォーマーのMLPブロックを1つのブロックに組み合わせ、以前の深いシーケンスモデルの設計を簡素化します。 選択的SSMとMambaアーキテクチャの主要な特徴により、これらは完全な再帰モデルとして動作するより広範な基盤モデルの基盤となることができます: (i)高品質:遺伝学や言語などの密なモダリティにおいてセレクティビティは優れたパフォーマンスを発揮します。 (ii)高速な推論とトレーニング:推論中、モデルを自己回帰的に展開するためのステップごとの時間は定数であり、過去のコンポーネントのキャッシュを必要としないため、計算とメモリのスケーリングはシーケンスの長さに比例します。 (iii)長いコンテキスト:品質と効率の組み合わせにより、シーケンスの長さが100万に達するまで実際のデータでのパフォーマンス向上が得られます。 研究チームは、実験的な証拠をもとに、Mambaの潜在能力を汎用性のあるシーケンスFMのバックボーンとして、さまざまなモダリティや状況における事前学習品質やドメイン特化のタスクパフォーマンスに関してサポートしています: ・人工材料。Mambaは、巨大な言語モデルにとって重要とされるコピーや誘導ヘッドタスクなどの重要な合成タスクを容易に解決するだけでなく、無限に長い解を予測することもできます。 ・ゲノミクスとオーディオ。音声波形やDNA配列のモデリングにおいて、事前学習品質や下流のメトリクスに関して、MambaはSaShiMi、Hyena、Transformersなどの従来の最先端モデルを凌ぎます。そのパフォーマンスは、両方のコンテキストで100万文字長のシーケンスまでより多くの文脈を持つことで改善されます。 • モデリング言語。マンバは、下流で実施される評価と事前学習の複雑さの両方で本当にTransformerのようなパフォーマンスを実現する最初の線形時間シーケンスモデルを表しています。 研究チームは、Mambaが、LLaMaに基づく高度なTransformerトレーニングレシピを含む多くのベースラインを上回り、1Bのパラメータまでのスケーリング則に従っています。同じサイズのTransformerと比較して、彼らのMamba言語モデルは5倍の世代スループットを持ち、Mamba-3Bの品質はその2倍のサイズのTransformerと同等です。
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.