Learn more about Search Results メール - Page 58

機械学習の専門家 – Sasha Luccioni

🤗 マシンラーニングエキスパートへようこそ – サーシャ・ルッチョーニ 🚀 サーシャのようなMLエキスパートがあなたのMLロードマップを加速する方法に興味がある場合は、hf.co/supportを訪れてください。 こんにちは、友達たち!マシンラーニングエキスパートへようこそ。私は司会者のブリトニー・ミュラーで、今日のゲストはサーシャ・ルッチョーニです。サーシャは、Hugging Faceで研究科学者として、機械学習モデルとデータセットの倫理的・社会的影響に取り組んでいます。 サーシャはまた、Big Science WorkshopのCarbon Footprint WGの共同議長、WiMLの理事、そして気候危機に機械学習を適用する意義のある活動を促進するClimate Change AI(CCAI)組織の創設メンバーでもあります。 サーシャがメールの炭素フットプリントを計測する方法、地元のスープキッチンが機械学習の力を活用するのをどのように手助けしたか、そして意味と創造性が彼女の仕事を支える方法についてお話しいただきます。 この素晴らしいエピソードを紹介するのをとても楽しみにしています!以下がサーシャ・ルッチョーニとの私の対話です: 注:転記はわかりやすい読み物を提供するためにわずかに修正/書式設定されています。 今日参加していただき、本当にありがとうございます。私たちはあなたが来てくれたことを非常に嬉しく思っています! サーシャ: 私もここにいることを本当に嬉しく思っています。 直接本題に入りますが、あなたのバックグラウンドとHugging Faceへの道を教えていただけますか? サーシャ:…

非常に大規模な言語モデルとその評価方法

大規模な言語モデルは、Evaluation on the Hubを使用してゼロショット分類タスクで評価することができます! ゼロショット評価は、大規模な言語モデルの性能を測定するための研究者の人気のある方法であり、明示的にラベル付けされた例を示すことなくトレーニング中に能力を学習することが示されています。Inverse Scaling Prizeは、大規模なゼロショット評価を実施し、より大きなモデルがより小さなモデルよりも性能が低いタスクを発見するための最近のコミュニティの取り組みの一例です。 ハブ上での言語モデルのゼロショット評価の有効化 Evaluation on the Hubは、コードを書かずにHub上の任意のモデルを評価するのに役立ち、AutoTrainによって動作します。今では、Hub上の任意の因果言語モデルをゼロショットで評価することができます。ゼロショット評価は、トレーニングされたモデルが与えられたトークンセットを生成する可能性を測定し、ラベル付けされたトレーニングデータを必要としないため、研究者は高価なラベリング作業を省略することができます。 このプロジェクトのために、AutoTrainのインフラストラクチャをアップグレードし、大規模なモデルを無償で評価することができるようにしました 🤯!ユーザーがカスタムコードを書いてGPU上で大規模なモデルを評価する方法を見つけるのは高価で時間がかかるため、これらの変更により、660億のパラメータを持つ言語モデルを2000の文長のゼロショット分類タスクで評価するのに3.5時間かかり、コミュニティ内の誰でも実行できるようになりました。Evaluation on the Hubでは現在、660億のパラメータまでのモデルの評価をサポートしており、より大きなモデルのサポートも今後提供される予定です。 ゼロショットテキスト分類タスクは、プロンプトと可能な補完を含むデータセットを受け取ります。補完はプロンプトと連結され、各トークンの対数確率が合計され、正しい補完と比較するために正規化され、タスクの正確性が報告されます。 このブログ記事では、WinoBiasという職業に関連するジェンダーバイアスを測定する共参照タスクにおいて、ゼロショットテキスト分類タスクを使用してさまざまなOPTモデルを評価します。WinoBiasは、モデルが職業を言及する文章においてステレオタイプな代名詞を選ぶ可能性が高いかどうかを測定し、結果はモデルのサイズに関して逆のスケーリング傾向を示していることがわかります。 事例研究:WinoBiasタスクへのゼロショット評価 WinoBiasデータセットは、補完の選択肢が分類オプションであるゼロショットタスクとしてフォーマットされています。各補完は代名詞によって異なり、対象は職業に対して反ステレオタイプ的な補完に対応します(例:「開発者」は男性が主導するステレオタイプ的な職業なので、「彼女」が反ステレオタイプ的な代名詞になります)。例はこちらをご覧ください: 次に、Evaluation on the…

複雑なテキスト分類のユースケースにおいて、Hugging Faceを活用する

Hugging Faceエキスパートアクセラレーションプログラムとのウィティワークスの成功物語 MLソリューションの迅速な構築に興味がある場合は、エキスパートアクセラレーションプログラムのランディングページをご覧いただき、こちらからお問い合わせください! ビジネスコンテキスト ITが進化し、世界を変え続ける中、業界内でより多様で包括的な環境を作り上げることが重要です。ウィティワークスは、この課題に取り組むために2018年に設立されました。最初は多様性を高めるための組織へのコンサルティング企業としてスタートし、ウィティワークスはまず、包括的な言語を使用した求人広告の作成において彼らを支援しました。この取り組みを拡大するため、2019年には英語、フランス語、ドイツ語で包括的な求人広告の作成を支援するWebアプリを開発しました。そして、その後、ブラウザ拡張機能として機能するライティングアシスタントを追加し、メール、LinkedInの投稿、求人広告などで潜在的なバイアスを自動的に修正し、説明するようにしました。目的は、ハイライトされた単語やフレーズの潜在的なバイアスを説明するマイクロラーニングの手法を提供することで、内部および外部のコミュニケーションにおける文化的変革を促進することでした。 ライティングアシスタントによる提案の例 最初の実験 ウィティワークスは最初に、アシスタントをゼロから構築するために基本的な機械学習アプローチを選びました。事前学習済みのspaCyモデルを使用した転移学習を行い、アシスタントは次のことができました: テキストを分析し、単語をレンマに変換する 言語分析を実行する テキストから言語的な特徴を抽出する(複数形と単数形、性別)、品詞タグ(代名詞、動詞、名詞、形容詞など)、単語の依存関係ラベル、名前付きエンティティの認識など 言語的な特徴に基づいて単語を検出・フィルタリングし、アシスタントは非包括的な単語をリアルタイムでハイライトし、代替案を提案することができました。 課題 語彙には約2300の非包括的な単語やイディオムがあり、それに対して基本的なアプローチは語彙の85%に対してうまく機能しましたが、文脈に依存する単語には失敗しました。そのため、課題は文脈に依存した非包括的な単語の分類器を構築することでした。このような課題(言語的な特徴を認識するのではなく、文脈を理解すること)は、Hugging Face transformersの使用につながりました。 文脈に依存した非包括的な単語の例: 化石燃料は再生可能な資源ではありません。Vs 彼は古い化石です。 柔軟なスケジュールを持っています。Vs スケジュールを柔軟に保つ必要があります。 Hugging Faceエキスパートが提供するソリューション 適切なMLアプローチを決定するためのガイダンスを受ける。…

StarCoder:コードのための最先端のLLM

StarCoderの紹介 StarCoderとStarCoderBaseは、GitHubからの許可を得たデータを使用してトレーニングされた大規模な言語モデルです。これらのモデルは、80以上のプログラミング言語、Gitのコミット、GitHubの課題、Jupyterノートブックなど、様々な情報源からデータを取得しています。LLaMAと同様に、私たちは1兆トークンのために約15兆パラメータのモデルをトレーニングしました。また、35兆のPythonトークンに対してStarCoderBaseモデルを微調整し、新しいモデルであるStarCoderと呼びます。 StarCoderBaseは、人気のあるプログラミングベンチマークにおいて既存のオープンなコードモデルよりも優れたパフォーマンスを発揮し、GitHub Copilotの初期バージョンで使用された「code-cushman-001」といったクローズドモデルとも匹敵する結果を示しました。StarCoderモデルは、8,000以上のトークンのコンテキスト長を持つため、他のオープンなLLMよりも多くの入力を処理することができます。これにより、さまざまな興味深いアプリケーションが可能となります。例えば、StarCoderモデルに対して対話のシリーズをプロンプトとして与えることで、技術アシスタントとしての機能を果たすことができます。さらに、これらのモデルはコードの自動補完、指示に基づいたコードの変更、コードスニペットの自然言語による説明などにも使用することができます。私たちは、改善されたPIIの削除パイプライン、新しい帰属追跡ツールなど、安全なオープンモデルのリリースに向けていくつかの重要な手順を踏んでいます。また、StarCoderは改良されたOpenRAILライセンスのもとで一般に公開されています。この更新されたライセンスにより、企業がモデルを製品に統合するプロセスが簡素化されます。StarCoderモデルの強力なパフォーマンスにより、コミュニティは自分たちのユースケースや製品に適応させるための堅固な基盤としてこれを活用することができると考えています。 評価 私たちはStarCoderといくつかの類似モデルについて、さまざまなベンチマークで徹底的に評価を行いました。人気のあるPythonベンチマークであるHumanEvalでは、関数のシグネチャとドキュメント文字列に基づいてモデルが関数を完成させることができるかどうかをテストしました。StarCoderとStarCoderBaseは、PaLM、LaMDA、LLaMAなどの最大のモデルを上回るパフォーマンスを発揮しましたが、それらよりも遥かに小さなサイズであるという特徴も持っています。また、CodeGen-16B-MonoやOpenAIのcode-cushman-001(12B)モデルよりも優れた結果を示しました。私たちはまた、モデルの失敗例として、通常は練習の一部として使用されるため、# Solution hereというコードを生成することがあることに気付きました。実際の解決策を生成させるために、プロンプトとして<filename>solutions/solution_1.py\n# Here is the correct implementation of the code exerciseを追加しました。これにより、StarCoderのHumanEvalスコアは34%から40%以上に向上し、オープンモデルの最新のベンチマーク結果を更新しました。CodeGenとStarCoderBaseに対してもこのプロンプトを試しましたが、あまり違いは観察されませんでした。 StarCoderの興味深い特徴の一つは、多言語対応であることです。そのため、MultiPL-Eという多言語の拡張を使用して評価を行いました。その結果、StarCoderは多くの言語においてcode-cushman-001と匹敵または優れたパフォーマンスを発揮することがわかりました。また、DS-1000というデータサイエンスのベンチマークでも、StarCoderは他のオープンアクセスモデルを圧倒する結果を示しました。しかし、コード補完以外にもモデルができることを見てみましょう! 技術アシスタント 徹底的な評価の結果、StarCoderはコードの記述に非常に優れていることがわかりました。しかし、ドキュメンテーションやGitHubの課題などの情報を大量に学習しているため、技術アシスタントとして使用できるかどうかもテストしたかったのです。AnthropicのHHHプロンプトに触発されて、私たちはTech Assistant Promptを作成しました。驚くべきことに、プロンプトだけでモデルは技術アシスタントとして機能し、プログラミングに関連する要求に答えることができます! トレーニングデータ このモデルは、The…

ファルコンはHugging Faceのエコシステムに着陸しました

イントロダクション ファルコンは、アブダビのテクノロジーイノベーション研究所が作成し、Apache 2.0ライセンスの下で公開された最新の言語モデルの新しいファミリーです。 特筆すべきは、Falcon-40Bが多くの現在のクローズドソースモデルと同等の機能を持つ、初めての「真にオープンな」モデルであることです 。これは、開発者、愛好家、産業界にとって素晴らしいニュースであり、多くのエキサイティングなユースケースの扉を開くものです。 このブログでは、ファルコンモデルについて詳しく調査し、まずそれらがどのようにユニークであるかを説明し、その後、Hugging Faceのエコシステムのツールを使ってそれらの上に構築することがどれほど簡単かを紹介します。 目次 ファルコンモデル デモ 推論 評価 PEFTによるファインチューニング 結論 ファルコンモデル ファルコンファミリーは、2つのベースモデルで構成されています:Falcon-40Bとその弟であるFalcon-7Bです。 40Bパラメータモデルは現在、Open LLM Leaderboardのトップを占めており、7Bモデルはそのクラスで最高のモデルです 。 Falcon-40BはGPUメモリを約90GB必要としますが、それでもLLaMA-65Bよりは少なく、Falconはそれを上回します。一方、Falcon-7Bは約15GBしか必要とせず、推論やファインチューニングは一般的なハードウェアでも利用可能です。 (このブログの後半では、より安価なGPUでもFalcon-40Bを利用できるように、量子化を活用する方法について説明します!) TIIはまた、モデルのInstructバージョンであるFalcon-7B-InstructとFalcon-40B-Instructを提供しています。これらの実験的なバリアントは、命令と会話データに適応された調整が行われているため、人気のあるアシスタントスタイルのタスクに適しています。 モデルを素早く試してみたい場合は、これらが最適な選択肢です。…

Pythonを使った感情分析(Sentiment Analysis)のFlair

シリーズ記事の次のブログへようこそ!今日は、感情分析のためのPythonライブラリで使用される方法の1つであるFlairを探求しますFlairは、NLP(自然言語処理)ライブラリです...

データサイエンスの求人探し:就職への道を導いてくれた5冊の本

大変だとわかっています!この困難な時期において、私たちは大きな苦難に直面していることは否定できませんCNNの2023年の解雇追跡データは、現在の状況を鮮明に示しています...

ベイリー・カクスマー、ウォータールー大学の博士課程候補 – インタビューシリーズ

カツマー・ベイリーは、ウォータールー大学のコンピュータ科学学部の博士課程の候補者であり、アルバータ大学の新入教員です彼女の研究の興味は、ユーザー意識のあるプライバシー強化技術の開発であり、対応するユーザーの認識、懸念、そして[…]と並行して、プライベートな計算の技術的アプローチの研究も行っています

将来のアプリケーションを支える大規模言語モデル(LLM)の力

生成AI、特にその言語フレーバーであるChatGPTはどこでも見かけます大規模言語モデル(LLM)の技術は、将来のアプリケーションの開発において重要な役割を果たすでしょうLLMは、数兆行に及ぶパブリックドメインのテキストに対する基礎モデルの詳細な事前トレーニングによって、言語理解に非常に優れています

AIハイパーソナライゼーションとは何ですか?利点、事例、倫理的懸念

AIのハイパーカスタマイズの概念、メカニズム、および事例について探求してくださいその利点と倫理的な問題について学びましょう

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us