Learn more about Search Results 6. 結論 - Page 56

Pythonの依存関係管理:どのツールを選ぶべきですか?

あなたのデータサイエンスプロジェクトが拡大するにつれて、依存関係の数も増えますプロジェクトの環境を再現可能かつメンテナンス可能に保つために、効率的な依存関係を使用することが重要です...

注目すべきプラグイン:データ分析を自動化するChatGPTプラグイン

このChatGPTプラグインを使用して、EDAプロセスを高速化してください

ExcelとPower BI – 意思決定においてどちらが優れているか?

現代の急速なビジネス環境においては、組織の成功のためには情報をもとにした意思決定が不可欠です。人気のあるビジネスインテリジェンスツールとそのユニークな機能を理解することが、真のポテンシャルを引き出す上で重要です。MS ExcelとPower BIの両方は、データ分析と意思決定に関する印象的な機能を提供しています。ただし、最適な選択を決定するには、具体的な要件に応じて決定する必要があります。この記事では、MS ExcelとPower BIの強みと特定のユースケースについて掘り下げ、ビジネスニーズに合わせてどちらのツールを選択するかをお手伝いします。 MS Excelとは? Microsoft Excelは、データの整理、操作、分析、可視化が可能な強力かつ使いやすいツールです。データ処理、クリーニング、変換などの重要な機能を提供しています。データ分析と可視化には、データ分析ツール、ピボットテーブル、グラフなどの組み込み機能があります。また、Goal Seek、Solver、Decision Trees、Sensitivity analysisなどの機能により、要約されたデータに基づいて情報をもとにした意思決定が可能です。Power PivotやQueryは、データモデリングや変換を容易にすることで、意思決定に重要な役割を果たしています。Excelは、データを分析し、効果的な意思決定を行うための多目的なツールです。 Power BIとは? Power BIは、Excelと同等の性能を持ち、データ変換、意思決定、さまざまなデータソースへの接続、統合、可視化、プレゼンテーションなどの機能を提供するMicrosoftが提供する別の意思決定テーブルです。Power BIには、動的でインタラクティブなレポートやリアルタイムダッシュボードを作成する機能など、独自の特徴があります。また、データモデリング、異なるデータ間の関係の形成、データ内の依存関係の検索なども含まれます。 さらに、Power Queryを介したデータクエリは、直感的なグラフィカルインターフェースを使用して、クリーニング、整形、および変換などのデータ処理アクションを実行する興味深い機能です。Microsoftの製品として、包括的で使いやすいビジネスインテリジェンスツールとしてのコア機能とサービスを提供します。 Excelの最良の機能 1. データの整理に使用できるスプレッドシート ソートおよびフィルタリング:ソートおよびフィルタリング機能を使用して、データを簡単に整理できます。…

PatchTST 時系列予測における画期的な技術革新

トランスフォーマーベースのモデルは、自然言語処理の分野(BERTやGPTモデルなど)やコンピュータビジョンなど、多くの分野で成功を収めていますしかし、時間の問題になると...

Light & WonderがAWS上でゲーミングマシンの予測保守ソリューションを構築した方法

この記事は、ライトアンドワンダー(L&W)のアルナ・アベヤコーン氏とデニス・コリン氏と共同執筆したものですライトアンドワンダーは、ラスベガスを拠点とするクロスプラットフォームゲーム会社であり、ギャンブル製品やサービスを提供していますAWSと協力して、ライトアンドワンダーは最近、業界初の安全なソリューション「Light & Wonder Connect(LnW Connect)」を開発しました[…]

マルチヘッドアテンションを使用した注意機構の理解

はじめに Transformerモデルについて詳しく学ぶ良い方法は、アテンションメカニズムについて学ぶことです。特に他のタイプのアテンションメカニズムを学ぶ前に、マルチヘッドアテンションについて学ぶことは良い選択です。なぜなら、この概念は少し理解しやすい傾向があるためです。 アテンションメカニズムは、通常の深層学習モデルに追加できるニューラルネットワークレイヤーと見なすことができます。これにより、重要な部分に割り当てられた重みを使用して、入力の特定の部分に焦点を当てるモデルを作成することができます。ここでは、マルチヘッドアテンションメカニズムを使用して、アテンションメカニズムについて詳しく見ていきます。 学習目標 アテンションメカニズムの概念 マルチヘッドアテンションについて Transformerのマルチヘッドアテンションのアーキテクチャ 他のタイプのアテンションメカニズムの概要 この記事は、データサイエンスブログマラソンの一環として公開されました。 アテンションメカニズムの理解 まず、この概念を人間の心理学から見てみましょう。心理学では、注意は他の刺激の影響を除外して、イベントに意識を集中することです。つまり、他の注意を引くものがある場合でも、私たちは選択したものに焦点を合わせます。注意は全体の一部に集中します。 これがTransformerで使用される概念です。彼らは入力のターゲット部分に焦点を当て、残りの部分を無視することができます。これにより、非常に効果的な方法で動作することができます。 マルチヘッドアテンションとは? マルチヘッドアテンションは、Transformerにおいて中心的なメカニズムであり、ResNet50アーキテクチャにおけるskip-joiningに相当します。場合によっては、アテンドするべきシーケンスの複数の他の点があります。全体の平均を見つける方法では、重みを分散させて多様な値を重みとして与えることができません。これにより、複数のアテンションメカニズムを個別に作成するアイデアが生まれ、複数のアテンションメカニズムが生じます。実装では、1つの機能に複数の異なるクエリキー値トリプレットが表示されます。 出典:Pngwing.com 計算は、アテンションモジュールが何度も反復し、アテンションヘッドとして知られる並列レイヤーに組織化される方法で実行されます。各別のヘッドは、入力シーケンスと関連する出力シーケンスの要素を独立して処理します。各ヘッドからの累積スコアは、すべての入力シーケンスの詳細を組み合わせた最終的なアテンションスコアを得るために組み合わされます。 数式表現 具体的には、キーマトリックスとバリューマトリックスがある場合、値をℎサブクエリ、サブキー、サブバリューに変換し、アテンションを独立して通過させることができます。連結すると、ヘッドが得られ、最終的な重み行列でそれらを組み合わせます。 学習可能なパラメータは、アテンションに割り当てられた値であり、各パラメータはマルチヘッドアテンションレイヤーと呼ばれます。以下の図はこのプロセスを示しています。 これらの変数を簡単に見てみましょう。Xの値は、単語埋め込みの行列の連結です。 行列の説明 クエリ:シーケンスのターゲットについての洞察を提供する特徴ベクトルです。クエリは、何がアテンションを必要としているかをシーケンスに要求します。 キー:要素に含まれるものを説明する特徴ベクトルです。クエリによってアテンションが与えられ、要素のアイデンティティを提供します。 値:…

新たな能力が明らかに:GPT-4のような成熟したAIのみが自己改善できるのか?言語モデルの自律的成長の影響を探る

研究者たちは、AlphaGo Zeroと同様に、明確に定義されたルールで競争的なゲームに反復的に参加することによってAIエージェントが自己発展する場合、多くの大規模言語モデル(LLM)が人間の関与がほとんどない交渉ゲームでお互いを高め合う可能性があるかどうかを調査しています。この研究の結果は、遠い影響を与えるでしょう。エージェントが独立に進歩できる場合、少数の人間の注釈で強力なエージェントを構築することができるため、今日のデータに飢えたLLMトレーニングに対して対照的です。それはまた、人間の監視がほとんどない強力なエージェントを示唆しており、問題があります。この研究では、エジンバラ大学とAIアレン研究所の研究者が、顧客と売り手の2つの言語モデルを招待して購入の交渉を行うようにしています。 図1:交渉ゲームの設定。彼らは2つのLLMエージェントを招待して、値切りのゲームで売り手と買い手をプレイさせます。彼らの目標は、より高い値段で製品を販売または購入することです。彼らは第三のLLMであるAI批評家に、ラウンド後に向上させたいプレイヤーを指定してもらいます。その後、批判に基づいて交渉戦術を調整するようにプレイヤーに促します。これを数ラウンド繰り返すことで、モデルがどんどん上達するかどうかを確認します。 顧客は製品の価格を下げたいと思っていますが、売り手はより高い価格で販売するように求められています(図1)。彼らは第三の言語モデルに批評家の役割を担ってもらい、取引が成立した後にプレイヤーにコメントを提供させます。次に、批評家LLMからのAI入力を利用して、再度ゲームをプレイし、プレイヤーにアプローチを改善するように促します。彼らは交渉ゲームを選んだ理由は、明確に定義されたルールと、戦術的な交渉のための特定の数量化目標(より低い/高い契約価格)があるためです。ゲームは最初は単純に見えますが、モデルは次の能力を持っている必要があります。 交渉ゲームのテキストルールを明確に理解し、厳密に遵守すること。 批評家LLMによって提供されるテキストフィードバックに対応し、反復的に改善すること。 長期的にストラテジーとフィードバックを反映し、複数のラウンドで改善すること。 彼らの実験では、モデルget-3.5-turbo、get-4、およびClaude-v1.3のみが交渉ルールと戦略を理解し、AIの指示に適切に合致している必要があるという要件を満たしています。その結果、彼らが考慮したモデルすべてがこれらの能力を示さなかったことが示されています(図2)。初めに、彼らはボードゲームやテキストベースのロールプレイングゲームなど、より複雑なテキストゲームもテストしましたが、エージェントがルールを理解して遵守することがより困難であることが判明しました。彼らの方法はICL-AIF(AIフィードバックからのコンテキスト学習)として知られています。 図2:私たちのゲームで必要な能力に基づいて、モデルは複数の階層に分けられます(C2-交渉、C3-AIフィードバック、C4-継続的な改善)。私たちの研究は、gpt-4やclaude-v1.3などの堅牢で適切に合致したモデルだけが反復的なAI入力から利益を得て、常に発展することができることを明らかにしています。 彼らは、AI批評家のコメントと前回の対話履歴ラウンドをコンテキストに応じたデモンストレーションとして利用しています。これにより、プレイヤーの前回の実際の開発と批評家の変更アイデアが、次のラウンドの交渉のためのフューショットキューに変換されます。2つの理由から、彼らはコンテキストでの学習を使用しています:(1)強化学習を用いた大規模な言語モデルの微調整は、高額であるため、(2)コンテキストでの学習は、勾配降下に密接に関連していることが最近示されたため、モデルの微調整を行う場合には、彼らが引き出す結論がかなり一般的になることが期待されます(資源が許される場合)。 人間からのフィードバックによる強化学習(RLHF)の報酬は通常スカラーですが、ICL-AIFでは、フィードバックが自然言語で提供されます。これは、2つのアプローチの注目すべき違いです。各ラウンド後に人間の相互作用に依存する代わりに、よりスケーラブルでモデルの進歩に役立つAIのフィードバックを検討しています。 異なる責任を負うときにフィードバックを与えられた場合、モデルは異なる反応を示します。バイヤー役のモデルを改善することは、ベンダー役のモデルよりも難しい場合があります。過去の知識とオンライン反復的なAIフィードバックを利用して、get-4のような強力なエージェントが常に意味のある開発を続けることができるとしても、何かをより高く売る(またはより少ないお金で何かを購入する)ことは、全く取引が成立しないリスクがあります。彼らはまた、モデルがより簡潔であるがより綿密(そして最終的にはより成功する)交渉に従事できることを証明しています。全体的に、彼らは自分たちの仕事がAIフィードバックのゲーム環境での言語モデルの交渉を向上させる重要な一歩になると期待しています。コードはGitHubで利用可能です。

ChatGPTのデジタル商品をオンラインで販売するプロンプト

ChatGPTは、オンラインでデジタル製品を販売して収益を上げたい人にとって、ありがたい存在です

AIの仕事を見つけるための最高のプラットフォーム

あなたのキャリアの目標、好みの仕事スタイル、およびAIの専門分野に依存するAIの仕事に最適なプラットフォームについてもっと学びましょう

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us