Learn more about Search Results This - Page 55
- You may be interested
- このAI論文は、’リラックス:エンド...
- 「リオール・ハキム、Hour Oneの共同創設...
- 「長期のCOVID検査への研究者の前進」
- キャルレールの最高製品責任者、ライアン...
- トム・ハンクスがAI生成のディープフェイ...
- 開発者や企業のためのジェミニAPIとさらに...
- 推論:可観測性のAI主導の未来?
- 「AIが候補者のマッチングを通じて採用の...
- 「NumPyのドット積のデコード:次元の魔術...
- 「リサーチアナリストになるには? 職務内...
- 「2023年および2024年に注目すべきトップ7...
- 「ジェイソン・フラックスとともに会話型A...
- 「Microsoft Azureの新しいディープラーニ...
- 見逃せない7つの機械学習アルゴリズム
- 「GeoPandasを使ったPythonにおける地理空...
ウェブと組み込みシステムにおけるRustの実行のための9つのルール
ユーザーの要求に応じて、私は最近、range-set-blazeというクレートをWebページ内で動作するように変換しましたまた、マイクロコントローラー(組み込み)でも動作するようにしました(range-set-blazeクレートは効率的に操作を行います...
3つの難易度レベルでベクトルデータベースを説明する
この記事では、ベクトルデータベースについて、直感的な理解からいくつかの例を交えて、より技術的な詳細に説明しています
Metaphy LabsのAIエバンジェリストに会いましょう
紹介 常に変化するテックの風景の中で、魅力的な現象が浮かび上がってきました。それがメタバースです。この領域をリードするのは、ビジョナリーな共同創業者であるヴァルン・シャルマ氏です。彼のAIへの情熱が、仮想領域を再構築するための旅を推進しています。ヴァルンに会ってください。彼はメタバースとAIの力を利用して、非凡な人間の相互作用、創造性、起業家精神を実現しています。彼のビジョンは物理的な制約を超え、没入型の体験を構築し、デジタルのフロンティアを開拓することを推進しています。 会話を始めましょう! AV: メタフィラボの共同創業者兼最高メタバースオフィサーとしての道のりについて教えていただけますか?何があなたをこの道に進ませたのですか? ヴァルン氏 : メタフィラボの共同創業者兼最高メタバースオフィサーとしての私の道のりは、挑戦的で充実した経験でした。私は常に技術への情熱を持ち、それが世界を変える可能性を感じていました。アクセス可能な没入型の体験や仮想世界を作り出すアイデアは、私を魅了し、この道で私をインスパイアし続けています。 さらに、人間を特別な存在にしているのは、言葉を超えてつながる能力です。しかし、技術は常に感情的なつながりの不足と結び付けられてきました。私たちはそれを変えたかったのです。私たちの独自の技術を通じて、感情的に優れた本当にパーソナルな体験を作り出しています。 AV: あなたの仕事で最も困難な側面は何ですか?それらをどのように克服していますか? ヴァルン氏 : 革新的なディープテック企業として、技術の最先端に立ち、イノベーションの先頭に立つことは、私が情熱をもって受け入れるスリリングな挑戦です。この新興のフィールドでは、認知度を高め、採用を促進することがハードルとなることもあります。しかし、クライアントに卓越した価値を提供することで、私たちはどんな障害も乗り越えることができます。 データサイエンスを用いてビジネス問題を解決する AV: 過去に取り組んだ特に興味深いプロジェクトを共有していただけますか?データサイエンスをどのように活用してビジネス問題を解決しましたか? ヴァルン氏 : データサイエンスは常に革新と私のテックの旅の核となってきました。私はデータサイエンティストでありAIエバンジェリストとしてのキャリアをスタートしました。幸運なことに、複数の可能性を秘めた人生を変えるプロジェクトに取り組む機会を得ました。 過去のプロジェクトでは、カスタムの機械学習アルゴリズムを活用してユーザーの行動を予測し、ソーシャルメディアプラットフォームのユーザーエクスペリエンスを向上させました。ユーザーデータと行動パターンを分析し、改善の余地がある領域を特定し、ターゲットを絞ったソリューションを実装しました。これにより、ユーザーのエンゲージメント、リテンション、収益の増加が大幅に実現しました。 AV: 仕事以外での趣味や興味がありますか?個人的な時間と仕事をどのようにバランスさせていますか? ヴァルン氏…
オリジナルのPDFのフォーマットを保持し、Amazon Textract、Amazon Translate、およびPDFBoxで翻訳されたドキュメントを表示します
様々な業界の企業は、大量のPDF文書を作成し、スキャンし、保存しています多くの場合、その内容はテキスト中心であり、別の言語で書かれているため、翻訳が必要ですこの問題に対処するためには、PDF内のコンテンツを自動的に抽出し、迅速かつ効率的に翻訳する自動化ソリューションが必要です多くの企業は多様な[…]
新しい言語モデルを評価するための3つの重要な方法
毎週新しいLLMがリリースされますが、私のように考えると、これはついに私がLLMを利用したいすべてのユースケースに適合するのでしょうか?このチュートリアルでは、私は...を共有します
Matplotlibを使用してインフォグラフィックを作成する
データを扱い、データサイエンティストとして仕事をするためには、魅力的で興味深いデータの可視化を作成することが重要ですこれにより、読者に情報を簡潔な形式で提供することができ、理解を助けることができます
Spotifyで学んだ初心者データサイエンティストのための5つの重要なレッスン(パート2)
この記事は「データサイエンティストの新入生クロニクル」シリーズの第2部ですまずは第1部をチェックしてください!これによって、チームや利害関係者との信頼関係を築くのに役立ちます
大規模な言語モデルにおけるコンテキストに基づく学習アプローチ
言語モデリング(LM)は、単語のシーケンスの生成的な尤度をモデル化することを目指し、将来の(または欠損している)トークンの確率を予測します言語モデルは自然言語処理の世界を革新しました...
PythonとPandasを使用したデータ集計:地質学のリソロジーデータの分析
データ集約技術を使用することで、圧倒的でほとんど理解できない数値データセットを、消化しやすく、読み手にとってもより親しみやすい形に変換することができますこのプロセスは…
TensorFlowを使用したGANの利用による画像生成
イントロダクション この記事では、GAN(Generative Adversarial Networks)を使用して手書き数字のユニークなレンダリングを生成するためのTensorFlowの応用について探求します。GANフレームワークには、ジェネレータとディスクリミネータという2つの主要なコンポーネントがあります。ジェネレータはランダムな方法で新しい画像を生成し、ディスクリミネータは本物と偽物の画像を区別するために設計されています。GANのトレーニングを通じて、手書き数字に似たコレクションの画像を得ることができます。この記事の主な目的は、MNISTデータセットを使用してGANを構築し評価する手順を概説することです。 学習目標 この記事は、生成的対抗ネットワーク(GAN)の包括的な紹介を提供し、画像生成におけるその応用を探求します。 このチュートリアルの主な目的は、TensorFlowライブラリを使用してGANを構築する手順をステップバイステップで読者に案内することです。MNISTデータセットでGANをトレーニングして手書き数字の新しい画像を生成する方法をカバーしています。 この記事では、ジェネレータとディスクリミネータを含むGANのアーキテクチャとコンポーネントについて説明し、基本的な動作原理を読者の理解を深めるために探求します。 学習を支援するために、記事にはMNISTデータセットの読み込みと前処理、GANアーキテクチャの構築、損失関数の計算、ネットワークのトレーニング、結果の評価などさまざまなタスクをデモンストレーションするコード例が含まれています。 さらに、この記事ではGANの予想される成果物である手書き数字に酷似した画像のコレクションを探求します。 この記事は、データサイエンスブログマラソンの一環として公開されました。 何を構築するのか? 既存の画像データベースを使用して新しい画像を生成することは、生成的対抗ネットワーク(GAN)と呼ばれる特殊なモデルの主要な特徴です。GANは多様な画像データセットを活用して教師なしまたは半教師ありの画像を生成することに優れています。 この記事では、GANの画像生成の潜在能力を活用して手書き数字を作成します。手法としては、手書き数字のデータベースでネットワークをトレーニングすることが含まれます。この教示的な記事では、Tensorflowライブラリを利用して基本的なGANを構築し、MNISTデータセットでトレーニングを行い、手書き数字の新しい画像を生成します。 どのように設定しますか? この記事の主な焦点は、GANの画像生成の潜在能力を活用することです。手順は、画像データベースの読み込みと前処理から始まり、GANのトレーニングプロセスを容易にするためです。データが正常に読み込まれたら、GANモデルを構築し、トレーニングとテストのための必要なコードを開発します。次のセクションでは、この機能を実装し、MNISTデータベースを使用して新しい画像を生成するための詳細な手順が提供されます。 モデルの構築 構築するGANモデルは、2つの重要なコンポーネントで構成されています: ジェネレータ:このコンポーネントは新しい画像を生成する責任があります。 ディスクリミネータ:このコンポーネントは生成された画像の品質を評価します。 GANを使用して画像を生成するために開発する一般的なアーキテクチャは、以下の図に示されています。次のセクションでは、データベースの読み取り、必要なアーキテクチャの作成、損失関数の計算、ネットワークのトレーニングなどの詳細な手順について簡単に説明します。また、ネットワークの検査と新しい画像の生成に使用するコードも提供されます。 データセットの読み込み MNISTデータセットは、コンピュータビジョンの分野で非常に重要で、28×28ピクセルの大きさの手書き数字の広範なコレクションで構成されています。このデータセットは、グレースケールの単一チャンネルの画像形式であるため、GANの実装に理想的です。 次のコードスニペットは、Tensorflowの組み込み関数を使用してMNISTデータセットを読み込む例を示しています。読み込みが成功したら、画像を正規化し、3次元形式に変形します。この変換により、GANアーキテクチャ内で2D画像データを効率的に処理することができます。また、トレーニングデータと検証データの両方にメモリが割り当てられます。…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.