Learn more about Search Results がん - Page 54

「VRは私たちを健康にするために自然の力を模倣できるのか?」

科学者たちは、仮想現実が自然にいることのいくつかの健康上の利益を提供できるかどうかを調査しています

「2023年にデータサイエンスFAANGの仕事をゲットする方法は?」

データサイエンスは非常に求められる分野となり、FAANG(Facebook、Amazon、Apple、Netflix、Google)企業での就職は大きな成果とされています。FAANG企業は革新的なアプローチ、先端技術、魅力的な報酬パッケージで知られています。この記事では、2023年にデータサイエンスのFAANGの仕事を獲得するための15のヒントについて説明します。 FAANGの仕事の特徴は何ですか? FAANG企業は、その影響力、市場支配力、経済の完全なセクターを覆い尽くす能力で知られています。FAANG組織で働くことには、巨大なデータセットへのアクセス、先端技術、協力的な作業環境、画期的なプロジェクトへの取り組みの機会など、多くの利点があります。さらに、FAANG企業はしばしば世界中からトップの人材を引きつけ、競争の激しい労働市場を作り出しています。 FAANGのデータサイエンティストは何をするのでしょうか? FAANG企業のデータサイエンティストは、データを活用してビジネスの意思決定、ユーザーエクスペリエンスの向上、先端技術の開発に重要な役割を果たします。彼らの責任は以下のようなものが含まれます: 大規模なデータセットの詳細な分析を行い、戦略的な意思決定や製品改善に役立つパターン、トレンド、洞察を特定する。 推薦システム、詐欺検出、自然言語処理などの複雑な問題を解決するために、機械学習モデルやアルゴリズムを開発・実装する。 データ駆動型の洞察をステークホルダーに明確かつ実行可能な方法で提示するための可視化やダッシュボードの作成。 新機能や製品変更の効果を評価するためにA/Bテストの設計と分析を行う。 ユーザーの行動、顧客の離反、製品やサービスの需要を予測するための予測モデルの構築。 感情分析やチャットボットなどの応用において、非構造化テキストデータの処理と理解にNLP技術を適用する。 データパイプラインの開発とメンテナンスにおいて、データエンジニアと協力して効率的かつ信頼性のあるデータフローを確保する。 最新のデータサイエンスの進展について常に最新の情報を得て、既存のプロセスの改善に向けて新しい方法論を探求する。 製品マネージャー、エンジニア、デザイナー、他のチームと協力してビジネスニーズを理解し、データに基づいたソリューションを提供する。 機密性を確保し、機密情報を取り扱う際に倫理基準を維持する。 FAANGの仕事を得るための15のヒント FAANGの仕事を得るためには、以下のヒントに従ってください: #1. データサイエンスと関連概念の堅固な基礎を築く データサイエンスで成功するためには、統計学、線形代数、確率、微積分などの基本的な概念をしっかりと理解することが重要です。これらの分野で強固な基礎を築き、複雑なデータの問題に効果的に取り組むことができます。 #2. データサイエンスで一般的に使用されるPython / Rをマスターする…

AIがあなたのように文章を書く方法(クロード2のチュートリアル)

「あなたはClaude 2の回答をChatGPTよりもずっと人間らしくすることができます」

「機械学習の解明:人気のあるMLライブラリとツール」

シニアデータサイエンティストとして、私はよく機械学習(ML)について学びたいと熱心なデータサイエンティスト志望者に出会いますこれは最初は困難に思える魅力的な分野ですが、適切な心構えとリソースがあれば、誰でもマスターできることを保証しますこの包括的なガイドでは、機械学習を解説します...

「ポッドキャスティングのためのトップAIツール(2023年)」

ポディウム ポディウムと呼ばれるAIパワードの技術は、ポッドキャストのポストプロダクションを大幅に加速することを意図しています。この技術により、トランスクリプト、ハイライト、チャプター、エピソードの要約を迅速に作成することができます。 このアプリケーションは使いやすく、アカウントの作成は必要ありません。必要なのはオーディオファイルを提出するだけです。ポディウムのAIは迅速に引用可能な箇所を見つけ出し、チャプターやタイトルを作成し、エピソードの要約を提供します。これらは簡単にソーシャルメディアで共有することができます。 また、アクセシビリティと検索エンジン最適化のために優れたトランスクリプトも提供されます。このアプリケーションは最初は無料ですが、一度に多くのエピソードを扱う必要がある場合は、安価な使用料金または特別な価格設定に変更されます。 リスナー.fm リスナー.fmのAIツールは、AIを活用したショーノート、タイトル、および説明の作成を通じて、ポッドキャストのポストプロダクションを改善することを目的としています。オーディオ録音を提出すると、AIが各オーディオエピソードに合わせた魅力的で注意を引くタイトル、説明、およびショーノートを作成します。このアプリケーションは、人間の介入なしで興味深く教育的なコンテンツを簡単に作成することができます。 このAIツールにより、すべてのポッドキャスターはオーディオファイルを簡単に管理し、コンテンツを改善し、視聴者を増やすことができます。このツールは使いやすく効果的であり、迅速かつ高品質なポストプロダクションを保証します。プラットフォームでは透明な価格設定、新機能への早期アクセス、カスタマーサポート、簡単な価格オプションを提供しています。これはアマチュア、プロ、ポッドキャストネットワークにも適しています。 ショーノート AIパワードのショーノートは、各ポッドキャストエピソードを自動的に要約し、トランスクリプトとキャプションファイルを含むランディングページを生成します。chatGPTを使用してYouTubeの自動キャプションを変換し、魅力的な引用を生成し、トランスクリプトをブログ投稿に変換することができます。 ショーノートが提供する3つのオプションは、無料プラン、クリエータープラン、およびプロプランです。無料プランには1つのショーノート、要約されたトランスクリプト、ランディングページ、および一般に公開されているすべてのショーが含まれています。 クリエータープランには毎月2つのショーノート、要約されたトランスクリプト、ランディングページ、ショーを非公開にするオプション、ランディングページエディター、完全なトランスクリプト、umsとahsが含まれています。 プロプランには無制限のショーノート、要約されたトランスクリプト、ランディングページ、ショーを非公開にするオプション、ランディングページエディター、完全なトランスクリプト、umsとahs、キャプションファイルが含まれています。 キャストマジック キャストマジックと呼ばれるAIパワードの技術は、ポッドキャスターが時間を節約し、高品質のコンテンツを作成するのに役立ちます。これにより、トランスクリプト、ショーノート、要約、ハイライト、引用、ソーシャルメディアの投稿など、公開の準備が整ったテキストにオーディオを変換できます。骨の折れるポストプロダクションの作業を自動化し、ポッドキャスターが高品質のオーディオコンテンツの制作に集中できるようにします。また、ZoomとSlackと互換性があります。 キャストマジックは、Chrome、Safari、Firefox、Windows、Linux、およびmacOSと互換性のある使いやすいプログラムで、コーディングは必要ありません。また、ユーザーは無料のトライアル期間中にプラットフォームを試すことができます。キャストマジックを使用することで、ポッドキャスターは毎週20時間以上の時間を節約できるだけでなく、リスナーごとに個別化されたコンテンツを生成することができます。特定のユーザーにカスタマイズされたダイナミックなウェブサイト体験を提供することは、ポッドキャストの露出を向上させ、収益を最適化するのに役立ちます。 Mood AI 強力なMood AIジェネレーティブポッドキャストマーケティングキットの助けを借りて、ポッドキャスターは大規模な視聴者に自分のコンテンツを届けることができます。ポッドキャストエピソードに基づいて、ジェネレーティブAIを使用して包括的なトランスクリプト、要約、キーワード、簡単な説明、重要なトピック、タイトル、ブログ投稿、ソーシャルメディアの投稿、ビデオクリップなどを自動的に作成します。 迅速なコンテンツとマーケティング資材の生成、およびコンテンツの効果を追跡することで、ポッドキャスト制作者はより広い視聴者を引き付けるのが簡単になります。 Adobe Podcast Adobe Podcastは、AIの機能を備えたオンラインのオーディオ録音および編集ツールです。オーディオの作成を簡素化するために、テキストへのオーディオ変換、ノイズリダクションなど、さまざまな機能を提供しています。ユーザーは、このプラットフォーム上で簡単かつ効果的にオーディオコンテンツを制作、編集、配布することができます。AIパワードのツールにより、Adobe…

OpenAIを使用してカスタムチャットボットを開発する

はじめに チャットボットは自動化されたサポートと個別の体験を提供し、ビジネスが顧客とつながる方法を革新しました。人工知能(AI)の最新の進展により、チャットボットの機能性の基準が引き上げられました。この詳細な書籍では、強力な言語モデルで知られるAIプラットフォームのリーディングカンパニーであるOpenAIを使用してカスタムチャットボットを作成するための詳細な手順が提供されています。 この記事はData Science Blogathonの一環として公開されました。 チャットボットとは何ですか? チャットボットは人間の会話を模倣するコンピュータプログラムです。自然言語処理(NLP)の技術を使用して、ユーザーの言っていることを理解し、関連性のある助言を提供します。 大量のデータセットと優れた機械学習アルゴリズムの利用可能性により、チャットボットは近年ますます賢くなっています。これらの機能により、チャットボットはユーザーの意図をより良く把握し、より本物らしい返答を提供することができます。 チャットボットの具体的な利用例: 顧客サービスのチャットボットは、よく寄せられる質問に答えて、消費者に24時間体制でサポートを提供します。 マーケティングのチャットボットは、リードの質を確認し、リードを生成し、製品やサービスに関する質問に答えるのを支援することができます。 教育のチャットボットは、個別指導を提供し、学生が自分のペースで学ぶことができるようにします。 医療のチャットボットは、健康に関する情報を提供し、薬に関する質問に答え、患者を医師や他の医療専門家とつなげることができます。 OpenAIの紹介 OpenAIは人工知能の研究開発の最前線にあります。自然言語の解釈と生成に優れた言語モデルの開発に先駆けて取り組んでいます。 OpenAIは、GPT-4、GPT-3、Text-davinciなどの高度な言語モデルを提供しており、チャットボットの構築などのNLP活動に広く使用されています。 チャットボットの利点 コーディングと実装に入る前に、チャットボットの利点を理解しましょう。 24時間365日の利用可能性: チャットボットはユーザーに24時間体制でサポートを提供し、人間の顧客サービス担当者の制約をなくし、ビジネスが顧客の要求に対応できるようにします。 改善された顧客サービス: チャットボットは頻繁に問い合わせられる質問に迅速かつ正確に応答することができます。これにより、顧客サービス全体の品質が向上します。 コスト削減: ビジネスは顧客サポートの業務を自動化し、大規模なサポートスタッフの必要性を減らすことで、長期的に多額の費用を節約することができます。…

GenAIOps:MLOpsフレームワークの進化

「2019年には、私はLinkedInのブログを公開しましたタイトルは『成功するためになぜML Opsが必要か』でした今日になって、分析、機械学習(ML)、人工知能(AI)を運用化することが求められています...」

150以上のミッドジャーニーロゴのプロンプト

「Midjourneyのような生成AIツールを使って、ビジネスのために美しいロゴを作成することができます」

「ExcelのTEXT関数の使い方は? [例を使って解説]」

Excelはデータの操作と書式設定を簡素化する強力なアプリケーションです。TEXT関数は、テキスト、日付、および数値を個々の好みに合わせてカスタマイズするための貴重なリソースです。多くの書式設定の可能性を持つTEXT関数により、データの外観を容易に変更することができます。この包括的な記事では、ExcelのTEXT関数の全範囲を探求し、その機能をマスターするためのさまざまなExcelのテキスト式の例を提供します。基本的な書式設定から高度なテキスト操作まで、このガイドはTEXT関数を効果的に使用し、Excelのスキルを向上させる知識を備えるでしょう。 Excelのテキスト式 ExcelのTEXT関数は、テキスト、日付、および数値を同様に書式設定することができます。受け入れる2つの入力は、書式設定したい値と書式設定を定義するコードです。書式コードは、さまざまな書式設定オプションを表す特殊文字で構成されています。 ExcelのTEXT関数の基本的な使用法 ExcelのTEXT関数の基本的な使用法は、値と書式コードを指定して所望の書式を表示することです。たとえば、以下の式を使用して、セルA1の日付を「dd-mmm-yyyy」として表示することができます。 =TEXT(A1, "dd-mmm-yyyy") このExcelのテキスト式は、日付の値を所望の書式に変換します。TEXT関数は、CONCATENATEなどの他の関数と組み合わせて、より複雑な書式設定シナリオを作成することもできます。 TEXT関数で使用される書式コード TEXT関数で使用される書式コードは、値の表示方法を決定します。 一部の一般的な書式コードには以下があります: 「dd」は月の日を表し、たとえば1、2、または3です。 「mmm」は月の名前を示します(例:Jan、Feb、Mar)。 「yyyy」は4桁の年を示します(2023など) 「hh」は時間を示します(例:01、02、03)。 「mm」は分を示します(00、01、02など)。 「ss」は秒を示します(00、01、02など)。 ここで示されているのは書式コードの一部のサンプルです。Excelはさまざまな書式コードを提供して、さまざまな書式設定ニーズに対応しています。 ExcelでTEXT関数を使用する方法 ExcelのTEXT関数は、データをカスタムの方法で操作および書式設定することができる強力なツールです。TEXT関数の一般的な使用例は次の3つです: テキストと数値または日付をカスタム書式で連結する ExcelのTEXT関数を使用すると、テキストと数値または日付を組み合わせた独自の書式を作成することができます。特定の方法で情報を表示したい場合に便利です。次の形式を使用して、テキストと数値または日付を連結します: =TEXT(value, "format")…

鑑識分類器をだます:敵対的な顔生成における生成モデルの力

ディープラーニング(DL)の最近の進歩、特に生成的対抗ネットワーク(GAN)の領域では、存在しない高度にリアルかつ多様な人間の顔の生成が可能になりました。これらの人工的に作られた顔は、ビデオゲーム、メイクアップ産業、コンピュータ支援設計などの領域で多くの有益な応用が見られますが、誤用時には重要なセキュリティと倫理上の懸念が生じます。 合成または偽の顔の誤用は、深刻な結果をもたらす可能性があります。例えば、GANによって生成された顔画像がアメリカの選挙で使用され、偽のソーシャルメディアプロファイルを作成することで、対象のグループに対して迅速に誤情報を広めることができました。同様に、17歳の高校生が強力な生成モデルであるStyleGAN2を利用して、アメリカの議会候補の偽のプロフィール写真をTwitterに認証させることに成功しました。これらの出来事は、GANによって生成された顔画像の誤用に関連する潜在的なリスクを強調し、それらの使用のセキュリティと倫理的な意味に対処することの重要性を示しています。 GANによって生成された偽の顔と実際の顔を区別するために、さまざまな方法が提案されています。これらの研究で報告された結果は、シンプルで監視されたディープラーニングベースの分類器がGANによって生成された画像の検出に非常に効果的であることを示しています。これらの分類器は、一般的に法科学分類器またはモデルと呼ばれます。 しかし、知的な攻撃者は、敵対的な機械学習技術を使用してこれらの偽の画像を操作し、高い視覚品質を維持しながら法科学分類器を回避することができます。最近の研究では、敵対的な攻撃者が生成モデルの潜在空間最適化を介して生成モデルの多様体を敵対的に探索することで、対象の法科学検出器によって誤分類されるリアルな顔を生成できることを示しています。さらに、敵対的な偽の顔は、画像空間に制約を課す従来の敵対的な攻撃よりも少ないアーティファクトを示すことも示されています。 ただし、この研究には重要な制限があります。具体的には、生成された敵対的な顔の属性(肌の色、表情、年齢など)を制御する能力が欠けています。これらの顔の属性を制御することは、特定の民族や年齢層をターゲットにして社会メディアプラットフォームを通じて迅速に虚偽のプロパガンダを広めることを目指す攻撃者にとって重要です。 潜在的な影響を考えると、画像法科学の研究者が属性条件付け攻撃に取り組み、開発することが重要です。これにより、既存の法科学顔分類器の脆弱性が明らかにされ、将来的に効果的な防御メカニズムの設計に取り組むことができます。この記事で説明されている研究は、属性制御が敵対的な攻撃において必要な理解を提供し、脆弱性の包括的な把握と堅牢な対策の開発を促すために行われています。 提案手法の概要は以下の通りです。 属性ベースの生成とテキスト生成に関連する2つのアーキテクチャが提示されています。画像に基づいているか、テキストによって誘導されているかに関係なく、提案手法は統一されたフレームワーク内で法科学顔検出器を欺くことができるリアルな敵対的な偽の顔を生成することを目指しています。この技術は、StyleGAN2の高度に分解された潜在空間を利用して、提供されたリファレンス画像に存在する属性を持つ偽の顔を生成するために、属性固有の潜在変数を敵対的に最適化する効率的なアルゴリズムを導入します。このプロセスにより、リファレンス画像から生成された偽の画像に望ましい粗いまたは細かい詳細を効果的に転送することができます。画像ベースの属性条件付けを行う際には、知覚損失によって誘導されながら敵対的な空間を探索することで、望ましい属性を生成された偽の画像に転送することができます。 さらに、Contrastive Language-Image Pre-training(CLIP)の共同画像テキスト表現能力を活用して、提供されたテキストの説明に基づいて偽の顔を生成します。これにより、生成された敵対的な顔画像と関連するテキストの説明との整合性を確保することができます。CLIPのテキストによるガイド付き特徴空間を利用することで、この特徴空間内で敵対的な潜在コードを検索し、関連するテキストで説明された属性に合致する偽の顔を生成することが可能になります。 論文で提供されているいくつかの結果を以下に示します。 これは、法医学的な分類器を回避するために現実的な敵対的な顔を生成するための新しいAI技術の要約でした。もし興味があり、この研究についてさらに詳しく知りたい場合は、以下のリンクをクリックして詳細情報を見つけることができます。

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us