Learn more about Search Results Introduction to Python - Page 52
- You may be interested
- 新しいZeroscope v2モデルに会ってくださ...
- マイクロソフトの研究者は、2段階の介入フ...
- ビッグテックと生成AI:ビッグテックが生...
- 「AIの透明性を解き放つ:Anthropicのフィ...
- 「自律走行車とトロリー問題:「良い」決...
- ChatGPTはナップサック問題を解決できます...
- 「VoAGI創設者グレゴリー・ピアテツキーシ...
- 「BERTをゼロからトレーニングする究極の...
- 「SAS認定データサイエンティストになるた...
- 「DAXで株式対策を更に進める」
- 「LK-99超伝導体:突破かもしれない、新た...
- Q-Learningの紹介 パート2/2
- この中国のAIモデル、Baichuan2-192kモデ...
- AIとMLによる株式取引の革命:機会と課題
- 「ロボットのビジョン-言語プランニングに...
SparkとTableau Desktopを使用して洞察に富んだダッシュボードを作成する
データの視覚的表現として、データの可視化はデータ分析において広く採用されている手法であり、有益なビジネスの洞察(トレンド、パターン、外れ値、相関関係など)を得るための手段です
LangFlow | LLMを使用してアプリケーションを開発するためのLangChainのUI
イントロダクション 大規模言語モデルは世界中で大きな話題となっています。ChatGPT、GPT3、Bardなどの大規模言語モデルが登場することで、開発者はこれらのモデルを活用して新しい製品ソリューションを開発し続けています。新しいバージョンの大規模言語モデルや新しいモデルが毎日登場するため、これらに追いつくことは問題です。各大規模言語モデルのドキュメントを調べる必要があります。LangChainは、さまざまな大規模言語モデルにラップされたライブラリであり、作業を容易にします。さらに、LangChainに基づいたUIであるLangFlowは、直接アプリケーションを作成および操作できるようになり、作業がより簡単になりました。 学習目標 LangFlow UIの理解 LangFlowのインストールと操作 LangFlowの内部機能の理解 LangFlowを使用してアプリケーションを作成する LangFlowを通じて作成したアプリケーションの共有 この記事は、Data Science Blogathonの一環として公開されました。 LangFlowとは何か、なぜLangFlowを使用するのか LangFlowは、react-flowを使用して設計されたPythonパッケージであるLangChainに基づいたグラフィカルなUIです。LangChainは、大規模言語モデルを使用してアプリケーションを作成するためのPythonパッケージです。エージェント、大規模言語モデル、チェーン、メモリ、プロンプトなど、さまざまなコンポーネントで構成されています。開発者はこれらのブロックを連結させてアプリケーションを作成します。LangChainには、ほとんどの人気のある大規模言語モデルのラッパーが含まれています。しかし、LangChainを使用するには、アプリケーションを作成するためのコードを書く必要があります。コードを書くことは、時間がかかることもあり、エラーを引き起こすこともあります。 ここでLangFlowが登場します。LangFlowはLangChainに基づいたグラフィカルなUIです。LangChainで提供されるすべてのコンポーネントが含まれています。LangFlowはドラッグアンドドロップ機能を提供しており、コンポーネントをスクリーン上にドラッグして大規模言語モデルからアプリケーションを構築できます。さらに、誰でも使える豊富な例も含まれています。この記事では、このUIについて説明し、それを使用してアプリケーションを構築する方法を説明します。 Langflowを始めましょう LangFlowとは何か、およびその機能の理解を深めるために、これからLangFlowについて詳しく見ていきましょう。LangFlow UIはJavaScriptとPythonの両方で利用できます。どちらかを選んで使用することができます。Pythonのバージョンを使用する場合、システムにPythonがインストールされている必要があり、LangChainライブラリも必要です。 LangFlowを使用するには、次のパッケージが必要です pip install langchain pip install…
Langchainを使用してYouTube動画用のChatGPTを構築する
はじめに ビデオとチャットで話すことができたらどのくらい便利だろうかと考えたことがありますか?私自身、ブログを書く人間として、関連する情報を見つけるために1時間ものビデオを見ることはしばしば退屈に感じます。ビデオから有用な情報を得るために、ビデオを見ることが仕事のように感じることもあります。そこで、YouTubeビデオやその他のビデオとチャットできるチャットボットを作成しました。これは、GPT-3.5-turbo、Langchain、ChromaDB、Whisper、およびGradioによって実現されました。この記事では、Langchainを使用してYouTubeビデオのための機能的なチャットボットを構築するコードの解説を行います。 学習目標 Gradioを使用してWebインターフェースを構築する Whisperを使用してYouTubeビデオを処理し、テキストデータを抽出する テキストデータを適切に処理およびフォーマットする テキストデータの埋め込みを作成する Chroma DBを構成してデータを保存する OpenAI chatGPT、ChromaDB、および埋め込み機能を使用してLangchainの会話チェーンを初期化する 最後に、Gradioチャットボットに対するクエリとストリーミング回答を行う コーディングの部分に入る前に、使用するツールや技術に慣れておきましょう。 この記事は、Data Science Blogathonの一部として公開されました。 Langchain Langchainは、Pythonで書かれたオープンソースのツールで、Large Language Modelsデータに対応したエージェントを作成できます。では、それはどういうことでしょうか?GPT-3.5やGPT-4など、商用で利用可能な大規模言語モデルのほとんどは、トレーニングされたデータに制限があります。たとえば、ChatGPTは、すでに見た質問にしか答えることができません。2021年9月以降のものは不明です。これがLangchainが解決する核心的な問題です。Wordドキュメントや個人用PDFなど、どのデータでもLLMに送信して人間らしい回答を得ることができます。ベクトルDB、チャットモデル、および埋め込み関数などのツールにはラッパーがあり、Langchainだけを使用してAIアプリケーションを簡単に構築できます。 Langchainを使用すると、エージェント(LLMボット)を構築することもできます。これらの自律エージェントは、データ分析、SQLクエリ、基本的なコードの記述など、複数のタスクに設定できます。これらのエージェントを使用することで、低レベルな知識作業をLLMに外注することができるため、時間とエネルギーを節約できます。 このプロジェクトでは、Langchainツールを使用して、ビデオ用のチャットアプリを構築します。Langchainに関する詳細については、公式サイトを訪問してください。 Whisper Whisperは、OpenAIの別の製品です。これは、オーディオまたはビデオをテキストに変換できる汎用音声認識モデルです。多言語翻訳、音声認識、および分類を実行するために、多様なオーディオをトレーニングしています。…
DataFrameを効率的に操作するためのloc Pandasメソッドの使い方
データに含まれるカラムや、生データの種類、データの記述統計量を把握することは、今後のデータ処理において正しく取り組むために非常に重要です
PyTorchを使った効率的な画像セグメンテーション:パート1
この4部作では、PyTorchを使用して深層学習技術を使った画像セグメンテーションをゼロから段階的に実装しますシリーズを開始するにあたり、必要な基本的なコンセプトとアイデアについて説明します
Mojo | 新しいプログラミング言語
はじめに プログラミング言語の世界は常に進化し続けていますが、新たな競合者が現れ、機械学習と人工知能のソフトウェア開発を簡素化し、開発者の生産性を向上させるようになりました。Mojoは、Pythonをルーツに持ち、研究から本番環境へのスムーズな移行を妨げるパフォーマンスとデプロイメントの課題に対処するために戦略的に設計された革新的なプログラミング言語として登場しました。Pythonの制限を改善することにより、Mojoはこれらの2つの重要な領域のギャップを成功裏に埋め合わせます。まだ開発の初期段階ですが、将来的にはPythonのスーパーセットになるように設計されています。このブログ投稿では、Mojoの主要な側面と、コードの書き方を革新する方法を探求します。 Modularは、AIおよびMLアプリケーションのPythonのパフォーマンス問題を解決するためにMojoを作成しました。Pythonは強力で多目的な言語ですが、CおよびC++などの他の言語に比べて1000倍遅くなってしまいます。Modularは、Pythonの使いやすさとCおよびC++のスピードを組み合わせる言語を作成したいと考えており、MojoはPythonに比べて35000倍高速であると主張しています。 出典:https://www.modular.com/mojo ¶ この記事は、Data Science Blogathonの一部として公開されました。 Mojoの特徴 次のような注目すべき機能があり、その機能を強化しています。 プログレッシブ型:Mojoは、型を活用してパフォーマンスとエラーチェックを強化することができます。型注釈を利用することで、開発者はコードを最適化し、コンパイル中に潜在的なエラーをキャッチすることができます。 ゼロコスト抽象化:Mojoは、値を構造体にインライン割り当てすることによって、ストレージを効率的に制御することができます。このアプローチにより、オーバーヘッドを最小限に抑え、最適なパフォーマンスを実現できます。 所有権と借用チェッカー:Mojoは、所有権と借用チェッカーを実装することでメモリの安全性を提供します。この機能により、ダングリングポインターやデータ競合などの一般的な問題を防止し、より堅牢で安全なプログラミング体験を提供します。 ポータブルパラメトリックアルゴリズム:Mojoは、コンパイル時メタプログラミングを活用することで、ハードウェアに依存しないアルゴリズムを書くことができます。このアプローチにより、ボイラープレートコードを減らし、柔軟でポータブルなソリューションを作成することができます。 言語統合自動チューニング:Mojoは、組み込みの自動チューニング機能を提供することで、パラメータの最適化プロセスを簡素化します。ターゲットハードウェア上でのパフォーマンスを最大化するための最適なパラメータ値を自動的に検索し、手動での微調整を必要としません。 さらに、Mojoは以下の機能を備えています。 MLIRのフルパワー:Mojoは、MLIR(Multi-Level Intermediate Representation)の全機能を活用しています。MLIRは、プログラムの効率的な最適化や変換を実現し、パフォーマンスを向上させ、他のMLフレームワークとのシームレスな統合を可能にします。 並列異種ランタイム:Mojoは、異なるハードウェアアーキテクチャ上での並列実行をサポートしています。この機能により、利用可能なリソースを効率的に活用し、マルチデバイスや分散コンピューティングシナリオでのパフォーマンスを向上させることができます。 高速コンパイルタイム:Mojoは、高速なコンパイルを優先し、開発者が素早く反復し、コード変更と実行の間の時間を短縮することができます。この機能により、スムーズな開発体験と迅速なフィードバックループが実現されます。 全体的に、Mojoは、パフォーマンス、安全性、ポータビリティ、および開発者の生産性に優れたプログラミング言語を提供するためにこれらの機能を組み合わせています。 パフォーマンス パフォーマンスに関しては、Mojoは、複数のコア、ベクトルユニット、専用アクセラレータユニットを含むハードウェアの潜在能力を最大限に活用することで、Pythonの能力を大幅に向上させています。これは、最新のコンパイラと異種ランタイムシステムを統合することによって実現されています。Mojoを使用することで、開発者は、現代のハードウェアアーキテクチャで利用可能な膨大な処理能力を引き出すことができます。…
ゼロから学ぶアテンションモデル
はじめに アテンションモデル、またはアテンションメカニズムとも呼ばれるものは、ニューラルネットワークの入力処理技術に使用されるものです。これにより、ネットワークは複雑な入力の異なる側面に集中し、全データセットを分類するまでに個別に処理できます。目標は、複雑なタスクを順次処理される注目の小さな範囲に分解することです。このアプローチは、人間の心が新しい問題をより簡単なタスクに分解し、ステップバイステップで解決する方法に類似しています。アテンションモデルは、特定のタスクにより適応し、パフォーマンスを最適化し、関連情報に注意を払う能力を向上することができます。 NLPにおけるアテンションメカニズムは、過去10年間でディープラーニングにおける最も価値のある発展の1つです。TransformerアーキテクチャやGoogleのBERTなどの自然言語処理(NLP)は、最近の進歩をもたらしています。 学習目標 ディープラーニングにおけるアテンションメカニズムの必要性、機能、モデルのパフォーマンスを向上させる方法を理解する。 アテンションメカニズムの種類や使用例を知る。 あなたのアプリケーションとアテンションメカニズムの使用のメリットとデメリットを探究する。 アテンションの実装例に従ってハンズオンでの経験を得る。 この記事はData Science Blogathonの一部として公開されました。 アテンションフレームワークを使用するタイミング アテンションフレームワークは、元々エンコーダー・デコーダー型のニューラル機械翻訳システムやコンピュータビジョンでのパフォーマンス向上に使用されました。従来の機械翻訳システムは、大規模なデータセットと複雑な機能を処理して翻訳を行っていましたが、アテンションメカニズムはこのプロセスを簡素化しました。アテンションメカニズムは、単語ごとに翻訳する代わりに、固定長のベクトルを割り当てて入力の全体的な意味と感情を捉え、より正確な翻訳を実現します。アテンションフレームワークは、エンコーダー・デコーダー型の翻訳モデルの制限に対処するのに特に役立ちます。入力のフレーズや文の正確なアラインメントと翻訳を可能にします。 アテンションメカニズムは、入力シーケンス全体を単一の固定コンテンツベクトルにエンコードするのではなく、各出力に対してコンテキストベクトルを生成することで、より効率的な翻訳が可能になります。アテンションメカニズムは翻訳の精度を向上させますが、常に言語的な完璧さを実現するわけではありません。しかし、オリジナルの入力の意図と一般的な感情を効果的に捉えることができます。要約すると、アテンションフレームワークは、従来の機械翻訳モデルの制限を克服し、より正確でコンテキストに対応した翻訳を実現するための貴重なツールです。 アテンションモデルはどのように動作するのか? 広い意味では、アテンションモデルは、クエリと一連のキー・バリューペアをマップする関数を使用して出力を生成します。これらの要素、クエリ、キー、値、および最終出力はすべてベクトルとして表されます。出力は、クエリと対応するキーの類似性を評価する互換性関数によって決定される重み付き平均値を取ることによって計算されます。 実践的な意味では、アテンションモデルは、人間が使用する視覚的アテンションメカニズムに近いものをニューラルネットワークで近似することを可能にします。人間が新しいシーンを処理する方法に似て、モデルは画像の特定の点に集中し、高解像度の理解を提供し、周囲の領域を低解像度で認識します。ネットワークがシーンをより良く理解するにつれて、焦点を調整します。 NumPyとSciPyを使用した一般的なアテンションメカニズムの実装 このセクションでは、PythonライブラリNumPyとSciPyを利用した一般的なアテンションメカニズムの実装を調べます。 まず、4つの単語のシーケンスのための単語埋め込みを定義します。単純化のために、単語埋め込みを手動で定義しますが、実際にはエンコーダーによって生成されます。 import numpy as np…
データサイエンスと機械学習の違いは何ですか?
はじめに 「データサイエンス」と「機械学習」は、25世紀において注目すべき技術的なトピックです。初心者のコンピュータサイエンスの学生からNetflixやAmazonなどの大手企業まで、様々なエンティティによって利用されています。ビッグデータの急増により、ペタバイトやエクサバイト単位で測定される膨大な量のデータを扱う新しい時代が訪れました。過去には、データのストレージには重大な課題がありましたが、現在ではHadoopなどのフレームワークによってこれらの問題が解決され、データ処理に重点が移りました。この文脈において、データサイエンスと機械学習は重要な役割を果たしています。しかし、これら2つの用語の違いは何でしょうか?この記事では、データサイエンスと機械学習の比較を掘り下げ、その違いを探ります。 データサイエンスとは? ビジネスや組織がリポジトリに保持する膨大な量のデータの複雑な分析を行うことです。データのソース、データの主題の分析、そしてデータが将来的にビジネスの成長にどのように役立つかについて、この研究ではすべてカバーされます。常に2つのタイプの組織データがあります。構造化データと非構造化データです。このデータを分析することで、市場やビジネストレンドについて重要なことを学び、データセット内のパターンを特定することにより、企業は効率を向上させ、競合他社と差別化することができます。 機械学習とは? 機械学習という研究分野のおかげで、コンピュータは明示的にプログラムされることなく学習することができるようになりました。機械学習はアルゴリズムを使用してデータを処理し、予測を行うためにトレーニングされます。指示、データ、または観察値が機械学習の入力となります。機械学習の利用は、Facebook、Googleなどの企業で広く行われています。 データサイエンス vs 機械学習 側面 データサイエンス 機械学習 定義 構造化および非構造化データから知識と洞察を抽出するために、科学的な方法、プロセス、アルゴリズム、およびシステムを使用する多様な分野。 明示的にプログラムされることなく、コンピュータシステムが学習し、予測や決定を行うためのアルゴリズムと統計モデルを開発する人工知能(AI)のサブフィールド。 スコープ データ収集、クリーニング、分析、可視化、解釈など、データライフサイクルのさまざまな段階を包括する広い範囲。 データから学習し、予測や決定を行うためのアルゴリズムとモデルの開発に焦点を絞った狭い範囲。 目標 複雑な問題を解決し、データに基づいて意思決定を行うために、データから洞察、パターン、そして知識を抽出すること。 機械がデータから学び、特定のタスクにおいて自動的にパフォーマンスを向上させるためのモデルとアルゴリズムを開発すること。 技術 統計、データマイニング、データ可視化、機械学習、深層学習など、様々な技術やツールを組み合わせています。 教師あり学習、教師なし学習、強化学習、深層学習などの機械学習アルゴリズムの適用に主眼を置いています。…
メタAIのもう一つの革命的な大規模モデル — 画像特徴抽出のためのDINOv2
Mete AIは、画像から自動的に視覚的な特徴を抽出する新しい画像特徴抽出モデルDINOv2の新バージョンを紹介しましたこれはAIの分野でのもう一つの革命的な進歩です...
市民データサイエンティストとは誰で、何をするのでしょうか?
イントロダクション 今日のデータ駆動の世界において、データサイエンティストの役割は不可欠となっています。しかし、広大なデータセットに隠された謎を解くためには、データサイエンスのPh.D.を持つ必要はないと言ったらどうでしょうか?自己研鑽によって、正式な訓練を受けていないにもかかわらず、価値ある洞察を見出すスキルとツールを持つ新しいタイプの人材である「市民データサイエンティスト」の時代が到来しました。市民データサイエンティストは、形式的な訓練を受けていない普通の人々でありながら、データを行動可能な知識に変換する非凡な能力を持っており、組織が意思決定を行う方法を革新しています。本記事では、市民データサイエンティストの台頭、ビジネスへの影響、および彼らがもたらすエキサイティングな可能性について探求します。 市民データサイエンティストとは何か? 市民データサイエンティストとは、正式なデータサイエンスの訓練を受けていない個人でありながら、データを分析し洞察を導き出すスキルとツールを持っています。自己サービス型の分析プラットフォームや直感的なツールを活用して、データを探索し、モデルを構築し、データに基づく意思決定を行うことで、組織内でデータの力を民主化しています。 組織が彼らを雇うべき理由 データサイエンスは組織に著しい利益をもたらす広大な分野であり、市民データサイエンティストはデータの力を活用する上で重要な役割を担っています。以下は、企業が彼らを必要とする理由のいくつかです。 データ分析を簡素化する: 市民データサイエンティストは、さまざまな部門やチームに統合されており、特定のビジネスの課題に取り組み、それに関連するデータを探索することができます。これにより、より深い理解とより良い意思決定が可能になります。 ギャップを埋める: 彼らはドメインの専門知識とデータサイエンスの確固たる理解を持っており、技術的なスキルと業界知識をつなぐことができます。これにより、データ分析に文脈と洞察をもたらすことができます。 リアルタイムの洞察: 彼らはドメインの専門知識と自動分析ツールへのアクセス権を持っているため、リアルタイムでデータを分析し、意思決定者に迅速な洞察を提供することができます。これにより、組織は素早く対応し、機会をつかみ、リスクを効果的に軽減することができます。 フォースマルチプライヤー: 彼らはルーティンのデータ分析タスクを担当することで、データサイエンティストがより複雑な課題や戦略的なイニシアチブに注力できるようになります。彼らはフォースマルチプライヤーとして機能し、複数のチームをサポートし、全体的な生産性を向上させます。 ユニークな視点: 彼らは、データ分析に自分たちの多様な経験と専門知識をもたらし、新鮮な視点や革新的な問題解決アプローチを生み出すことができます。彼らのユニークな洞察は、しばしば新しい発見や改善された意思決定につながります。 アジャイルな実験: 市民データサイエンティストは、さまざまな分析手法を試行し、モデルを修正し、仮説をテストする柔軟性を持っています。彼らの適応力は、異なる分析手法を実験することでイノベーションを促進し、各自の分野での進歩を推進します。 必要な主要なスキル 市民データサイエンティストとして成功するために必要なスキルセットには、以下のような分析技術、技術的スキル、および専門的スキルが含まれます。 市民データサイエンティストは、Tableau、Power BI、またはMatplotlibやSeabornなどのPythonライブラリなどのプログラムを使用して、データを視覚的に解釈し、提示することができるようになっている必要があります。 彼らはデータを扱い、統計的手法を適用し、単純な機械学習モデルを開発するための基本的なプログラミングスキルを持っている必要があります。PythonやRなどのプログラミング言語に精通していることが有利です。 彼らはまた、統計学、データモデリング、データ可視化などのいくつかの分野に精通しており、データを評価・解釈し、より有用で効果的な洞察を生み出すことができます。…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.