Learn more about Search Results This - Page 50

「Juliaでスクラッチから作成するゲート付き再帰ニューラルネットワーク」

私は以前から、科学プログラミングとデータサイエンスのためにJuliaを学び始めましたJuliaの持つ統計的な強力さと、Rの表現力豊かで明確な構文を組み合わせたことにより、Juliaの採用は継続しています...

「データサイエンティストになる夢を諦めなかった8つの理由と、あなたも諦めるべきではない理由」

「私は今、2年間Spotifyでデータサイエンティストとして働いていますが、ビジネスからデータサイエンスへのキャリアチェンジは、私がこれまでにした最高の決断の一つであると言えますそれは...」

学習トランスフォーマーコード第2部 – GPTを間近で観察

私のプロジェクトの第2部へようこそここでは、TinyStoriesデータセットとnanoGPTを使用して、トランスフォーマーとGPTベースのモデルの複雑さについて探求しますこれらはすべて、古いゲーミングラップトップで訓練されました

KEPFILTERSの秘密をDAXで解き明かす

DAXのKEEPFILTERS()関数は、過小評価されている関数ですこの関数の詳細について探求し、興味深い情報を提供します

Googleのアナリティクスとデータサイエンスの領域を旅していく

イントロダクション Googleでアナリティクスとデータサイエンスの分野で優れた成果を挙げるプロフェッショナル、リシャブ・ディンドラに会いましょう。リシャブはデータを効果的に活用するための広範な専門知識と情熱を持っています。彼は先進技術を活用してイノベーションを推進し、価値ある洞察を抽出し、データに基づく意思決定を革新しています。リシャブのGoogleでのキャリアは素晴らしく、アナリティクスとデータサイエンスの分野を変革しました。彼の成果と貢献を探求して、Googleの成功を新たな高みに押し上げましょう。 リシャブから学びましょう! AV: Googleでデータサイエンティストになるまでの経歴を教えていただけますか?今の立場に至るためにどのようなステップを踏みましたか? リシャブ氏: 私は2011年にThorogood AssociatesでBIコンサルタントとしてキャリアをスタートし、それ以来データスペースで働いてきました。そのため、SQLやPythonなどの言語、データモデリング、プレゼンテーションスキル、およびTableauなどのツールの学習は、この旅の最初の必要なステップです。そして、数学と理論に深く入り込んでプロジェクトを行う人もいますが、私は実際にやってみてから概念を理解する方が最も効果的だと感じています。私にとって役立ったいくつかの重要なステップは次のとおりです: Analytics Vidhyaなどのプラットフォームでの素晴らしいコースを受講する Data Scienceのスキルを活用できる役割での機会を見つける 自分の情熱のあるテーマでプロジェクトを行う ビジネスとの緊密な連携とビジネスの理解 自分の知識を他の人と共有することで概念をより良く理解する ネットワーキングと他の人から学ぶこと Google Cloudの技術のスキルを獲得する データサイエンティストを目指すためのスキル AV: 成功したデータサイエンティストとして、データサイエンティストを目指す人にとって最も重要なスキルは何ですか?これらのスキルをどのように磨きましたか? ****リシャブ氏:  成功したデータサイエンティストとして、私はデータサイエンティストを目指す人にとって最も重要なスキルは次のとおりだと考えています: テクニカルスキル:…

「Googleのアナリティクスとデータサイエンスの領域を旅する」

紹介 Googleでアナリティクスとデータサイエンスの分野で優れたプロフェッショナルとして活躍するリシャブ・ディングラに会いましょう。リシャブはデータを効果的に活用するための幅広い専門知識と情熱を持っています。彼は先進技術を活用して革新を起こし、貴重な洞察を抽出し、データに基づく意思決定を革新しています。リシャブのGoogleでのキャリアは素晴らしいものであり、アナリティクスとデータサイエンスの分野を変革してきました。彼の功績と貢献を探ってみましょう。それがGoogleの成功を新たな高みに導いたものです。 リシャブから学ぼう! AV:Googleでデータサイエンティストになるまでの道のりを共有していただけますか?今の地位に至るまでにどのようなステップを踏みましたか? リシャブ氏:私は2011年にThorogood AssociatesでBIコンサルタントとしてキャリアをスタートさせ、それ以来データの分野で働いてきました。ですので、SQL、Python、データモデリング、プレゼンテーションスキル、そしてTableauのようなツールなど、最初に必要なステップはこれらの言語やスキルを学ぶことです。そしてその後、数学や理論の学習に深く入り込んでプロジェクトを行う人もいますが、私は実践して理解するという方法が最も効果的だと感じます。私が取ったいくつかの重要なステップは以下です: Analytics Vidhyaのようなプラットフォームでの素晴らしいコースを受講すること 自分の役割でデータサイエンスのスキルを活かせる機会を見つけること 情熱を持ってプロジェクトに取り組むこと ビジネスとの緊密な連携を図り、ビジネスについて学ぶこと 自分の知識を他の人と共有することで、概念をより良く理解すること ネットワーキングを通じて他の人から学ぶこと Google Cloudの技術を習得すること データサイエンティストを目指す人のためのスキル AV:成功したデータサイエンティストとして、データサイエンティストを目指す人にとって最も重要なスキルは何ですか?これらのスキルをどのように開発しましたか? リシャブ氏:成功したデータサイエンティストとして、私は次のスキルがデータサイエンティストを目指す人にとって最も重要だと考えています: 技術的スキル:これには強固な数学、統計学、プログラミングの基礎が含まれます。データサイエンティストはデータを収集、クリーニング、分析、可視化する能力が必要です。また、機械学習やディープラーニングの技術にも精通している必要があります。 問題解決スキル:データサイエンティストはデータを用いて問題を特定し、解決する能力が必要です。彼らは批判的かつ創造的に考え、新しい革新的な解決策を提案する必要があります。 コミュニケーションスキル:データサイエンティストは技術的、非技術的な双方のオーディエンスに対して自分の発見を伝えることができる必要があります。複雑な概念を明確かつ簡潔に説明する能力が求められます。 チームワークスキル:データサイエンティストはしばしば他のデータサイエンティスト、エンジニア、ビジネスプロフェッショナルと共同でプロジェクトに取り組みます。彼らは効果的に協力し、共通の目標に向かって働く必要があります。 私はこれらのスキルをコースを受講したり、個人プロジェクトに取り組んだり、他のデータサイエンティストとネットワーキングを行ったり、彼らの経験から学んだりすることで開発しました。 データサイエンティストを目指す人は避けるべき間違い…

このAIニュースレターは、あなたが必要とするすべてです #55

今週、私たちはついにOpen AIのCode Interpreterをテストすることができ、ChatGPT内のGPT-4の新機能に興奮していましたOpenAIは他の発表も行い、その計画を明らかにしました...

このAIニュースレターは、あなたが必要な全てです #55

今週は、ついにOpen AIのCode Interpreterをテストする機会を得て、とても興奮しましたこれは、ChatGPT内のGPT-4の新しい機能ですOpenAIは他にも発表があり、その中で...

5分であなたのStreamlitウェブアプリをデプロイしましょう

データサイエンティストが自分の作業をダッシュボードや動作するウェブアプリで紹介することが求められるようになりましたウェブアプリを作成するために利用可能なツールを知っていると非常に便利です利用可能なツールはたくさんあります...

5分であなたのStreamlitウェブアプリを展開してください

データサイエンティストが自分の仕事をダッシュボードや動作するWebアプリで紹介する必要性が高まってきていますWebアプリを作成するための利用可能なツールを知っておくことは非常に便利です利用可能なツールはたくさんあります...

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us