Learn more about Search Results NGC - Page 50

「探索的データ分析の改善のための実践的なヒント」

探索的データ分析(EDA)は、機械学習モデルを使用する前に必要なステップですEDAプロセスでは、データアナリストとデータサイエンティストにとって集中力と忍耐力が必要です:事前に…

「LLMsを使用したEコマース製品検索の強化」

近年、ウェブ検索エンジンは、検索能力を向上させるために、急速に大規模言語モデル(LLM)を取り入れるようになっています最も成功した例の一つはBERTによってパワードされたGoogle検索です...

スタビリティAIは、コーディングのための最初のLLMジェネレーティブAI製品であるStableCodeのリリースを発表します

Stability AIは、AIによるコーディング支援でデビューを飾る画期的な製品「StableCode」を発表しました。経験豊富なプログラマーとスキルアップを目指す初心者の両方を支援するために設計されたStableCodeは、実用性と学習サポートをユニークに組み合わせています。 StableCodeの中核は、コーディングの世界を変える3つの異なるモデルにあります。まず、ベースモデルは、BigCodeのスタックデータセット(v1.2)からさまざまなプログラミング言語を使用して厳密なトレーニングを受けました。その後、Python、Go、Java、JavaScript、C、Markdown、C++などの人気のある言語で強化され、プログラミング知識の幅広いリソースが作成されました。このトレーニングプロセスは、高性能コンピューティング(HPC)クラスタによって駆動される5600億のコードトークンによって支えられました。 しかし、イノベーションはそこで止まりませんでした。StableCodeフレームワークの次のレイヤーであるインストラクションモデルは、特定のプログラミングの課題に対応するよう細心の注意を払って調整されました。アルパカ形式の約12万件のインストラクション/レスポンスペアが洗練されたベースモデルによって評価され、洗練されたソリューションが生まれました。このソリューションは、洗練されたプログラミングタスクに優れた対応力を持っています。 StableCodeの真の魅力は、オートコンプリートの提案を再定義するために設計された長いコンテキストウィンドウモデルにあります。16,000トークンのコンテキストウィンドウを持つ前のモデルとは異なり、このモデルはより高い容量を持ち、2〜4倍のコードを収容することができます。これにより、プログラマーは一度に複数の平均サイズのPythonファイル相当を簡単に管理できるようになりました。この拡張された機能は、より複雑なコーディング課題を探求したい初心者にとって大きな利点となります。 StableCodeは、同じスケールのモデルと比較して優れたパフォーマンスを発揮します。Pass@1およびPass@10のメトリックを使用して、確立されたHumanEvalベンチマークに対して評価された結果、StableCodeは実世界のシナリオでその実力を証明しています。 StableCodeのベンチマークスコア 同じサイズのモデル(3B)とのHumanEvalベンチマーク比較 Stability AIのビジョンは、技術をすべての人にアクセス可能にすることに着実に根ざしており、StableCodeはその方向に向けた重要な一歩です。AIによるコーディング支援を民主化することにより、Stability AIはさまざまなバックグラウンドを持つ個人がコーディングを通じて問題解決のための技術の力を活用する扉を開きます。このアプローチにより、グローバルな技術競争の場を均等にし、コーディングリソースへの平等なアクセスを提供することが可能となります。 技術とますます結びついている世界で、StableCodeはシンプルさとエンパワーメントのツールとして浮かび上がります。Cutting-edgeなAIの機能とアクセシビリティへの取り組みを融合させることで、Stability AIは次世代のソフトウェア開発者の道を開拓しています。これらの開発者は単にコーディングを学ぶだけでなく、技術が制約を持たない未来に貢献することになるでしょう。

ジェネレーティブAIアプリケーションを構築するための最高のPythonツール チートシート

「VoAGI」新しいチートシートは、OpenAIやTransformersなど、ジェネラティブAIアプリを構築するためのトップPythonライブラリをまとめていますGradio、Diffusers、LangChainなどのツールも含まれており、初心者から上級者まで、クイックリファレンスをお探しの方に最適です

「AIがPowerPointと出会う」

この記事では、2023年5月のSnowflake SummitのStreamlit Hackathonで3位を獲得したオープンソースプロジェクトである「Instant Insight」アプリのバックエンドの仕組みについて詳しく説明しますウェブ...

「MetaGPTと出会ってください:GPTをエンジニア、建築家、マネージャに変えるオープンソースAIフレームワーク」

大規模言語モデル(LLM)ベースのマルチエージェントシステムは、人間の操作を模倣し、改善するための非常に優れた機会を持っています。しかし、最近の研究によって示されるように、現行のシステムは現実世界の応用に存在する複雑さにおいてより正確である必要がある場合があります。これらのシステムは、口頭やツールベースのやり取りを通じて建設的な協力を促進するための支援が主に必要であり、これにより、連続した非生産的なフィードバックループを減らし、実りのある協力的な相互作用を促進することが困難になります。多様なプロセスが効果的になるためには、よく構造化された標準化された作業手順(SOP)が必要です。実世界の実践に対する徹底的な認識と統合が重要です。 これらの一般的な制約を解決し、これらの知見を取り入れることで、LLMベースのマルチエージェントシステムの設計と構造を改善し、その効果と応用を向上させることが重要です。また、広範な共同プラクティスを通じて、人々はさまざまな分野で一般的に認識されているSOPを作成してきました。これらのSOPは、効果的な作業の分解と調整を容易にするために不可欠です。たとえば、ソフトウェアエンジニアリングにおけるウォーターフォールプロセスは、要件分析、システム設計、コーディング、テスト、成果物のための論理的なステップを確立します。 この合意形成ワークフローの助けを借りて、いくつかのエンジニアが生産的に協力することができます。また、人間の仕事には、それぞれの職務に適した専門的な知識があります。ソフトウェアエンジニアはプログラミングスキルを使ってコードを作成し、プロダクトマネージャーは市場調査を行って顧客の要求を特定します。協力は通常の出力から逸脱し、組織化されなくなります。たとえば、プロダクトマネージャーは、ユーザーの要望、市場のトレンド、競合する製品に関する徹底的な競争調査を実施し、開発を推進するために製品要件文書(PRD)を作成する必要があります。これらの分析には、明確で標準化された形式と優先順位付けられた目標が必要です。 これらの規範的なアーティファクトは、異なる役割からの関連する貢献を要する複雑な多様なプロジェクトの進展には欠かせません。これらは共同理解を具体化します。したがって、関連する役割に基づいた行動の仕様を使用してSOPをコーディングします。第三に、情報の交換を容易にするために、エージェントは標準化されたアクションの出力を作成します。MetaGPTは、人間の専門家が交換するアーティファクトを形式化することで、相互依存するジョブ間の調整を合理化します。エージェントは、活動とツールやリソースの共有に対する洞察を提供する共有環境によって接続されます。エージェント間のすべての通信は、この環境に含まれています。また、すべての協力記録が保存されるグローバルメモリプールも提供され、エージェントは必要なデータに対して購読または検索することができます。エージェントは、このメモリプールから以前のメッセージを取得してより多くの文脈を把握することができます。 対話を通じて情報を受動的に吸収するのではなく、このアーキテクチャはエージェントが積極的に関連する情報を観察し、引き出すことができるようにします。この設定は、チームワークを奨励する実際の職場に見られるシステムを模倣しています。彼らは、小規模なゲームの制作からより複雑な大規模なシステムまでを包括する、共同ソフトウェア開発のワークフローや関連するコード実装実験を表示して、そのアーキテクチャの効果を示しています。MetaGPTは、GPT-3.5やAutoGPT、AgentVerseなどのオープンソースフレームワークよりもはるかに多くのソフトウェアの複雑さを管理します。 さらに、MetaGPTは、自動的なエンドツーエンドのプロセス全体で要件書類、設計アーティファクト、フローチャート、およびインターフェース仕様を生成します。これらの中間の標準化された出力は、最終的なコードの実行の成功率を大幅に向上させます。自動生成されたドキュメンテーションのおかげで、人間の開発者は迅速に学習し、自分の専門知識を向上させて要件、設計、およびコードをさらに改善することができます。また、より洗練された人間-AIの相互作用が可能になります。結論として、彼らはさまざまなソフトウェアプロジェクトについての包括的な研究によってMetaGPTの妥当性を検証しています。 MetaGPTの役割ベースの専門家エージェント協働パラダイムによって可能になる可能性は、量的なコード生成のベンチマークとプロセス全体の出力の質的評価を通じて示されています。要するに、彼らは主に以下のような貢献をしました: • 役割定義、タスクの分解、プロセスの標準化などを含む、新しいメタプログラミングメカニズムを設計しました。 • 彼らは、人間のSOPをLLMエージェントにエンコードし、複雑な問題解決の能力を根本的に拡張するためのLLMベースのマルチエージェント協調フレームワークであるMetaGPTを提案しています。 • AutoGPT、AgentVerse、LangChain、およびMetaGPTを使用して、CRUD2コード、基本的なデータ分析ジョブ、およびPythonゲームの開発について広範なテストを行っています。 このようにして、MetaGPTはSOPを利用して複雑なソフトウェアを作成することができます。全体の結果は、MetaGPTがコードの品質と予測されるプロセスとの適合性の点で、競合他社を大幅に上回っていることを示しています。

「開発者向けのAIツール15個(2023年8月)」

Otter AI 人工知能を使用して、Otter.AIはユーザーにリアルタイムの会議のメモの音声文字起こしを提供し、共有可能で検索可能、アクセス可能、安全なものにします。音声を録音し、メモを書き、スライドを自動的にキャプチャし、要約を生成する会議アシスタントを手に入れましょう。 Notion AI Notionワークスペース内で、AIアシスタントNotionは、創造性、改訂、要約など、さまざまな文章関連のタスクをサポートすることができます。メール、求人募集、ブログ投稿など、さまざまな文章作成タスクのスピードと品質を向上させます。Notion AIは、ブログやリストからブレインストーミングセッションや創作活動まで、さまざまな文章タスクを自動化するために使用できるAIシステムです。NotionのAI生成コンテンツは、ドラッグアンドドロップのテキストエディタを使用して簡単に再編成および変換できます。 Gretel.ai Gretel AIは、実際のデータを模倣しながらユーザーのプライバシーを保護する合成データの作成プラットフォームです。Gretel.aiのAPIを使用すると、プログラマーは匿名化された暗号化された合成データを簡単に作成できます。これにより、プライバシーを保護しながらイノベーションを促進できます。このプラットフォームには、AIモデルを迅速かつ簡単にトレーニングし、ユースケースを検証し、必要に応じてデータを生成するために必要なすべての機能が備わっています。技術的および非技術的なユーザー向けのサンプルノートブックや使いやすいオンラインアプリケーションにより、開発者は合成データを探索できます。Gretel AIを使用して、必要なすべてのプライバシー要件を満たしながら、合成データを利用できるようになります。 Pieces for Developers Pieces for Developersは、AIを活用したスニペットマネージャーです。開発プロセス全体でコードを保存、作成、充実させ、再利用し、配布することができます。デスクトップソフトウェアと既存の開発ツールとの統合スイートにより、ウェブブラウザでの調査、チームとの作業、統合開発環境(IDE)でのコードの記述時に効率を向上させることができます。1つの強力な中央ツールで、特定のリポジトリに合わせたコードを生成したり、スクリーンショットからコードを抽出したり、コードにインラインコメントを自動的に追加したりすることができます。無料リソースを活用して、コーディングの時間と労力を節約しましょう。 LangChain LangChainフレームワークは、ソフトウェアアプリケーションでの大規模な言語モデルの扱いを簡素化するために作成されました。さまざまなコンポーネントに対するモジュラーな抽象化と実装を提供することで、言語モデルの扱いを簡素化します。また、LangChainのユースケース固有のチェーンを使用することで、ドキュメント分析、チャットボット、コード分析などのニッチな用途のアプリを開発者は迅速に作成および調整することができます。つまり、LangChainは、プログラマーに効率的に言語モデルを活用し、先進的なソフトウェアを作成するためのツールを提供します。 YOU You.comは、ユーザーのプライバシーを保護し、個別の検索体験を提供するAIパワードの検索エンジンです。多くの便利なAIパワードの機能と機能を備えたアプリケーションの統合スイートです。YOUwriteを使用して、人工知能を活用してブログ記事、メール、ソーシャルメディアの更新を作成できます。YOUを使用して、美しいAI生成の写真を発見し、作成できます。コードモードAIチャットでは、開発中にコードを書いてアシスタンスを受けることができます。スタディモードチャットを使用して、ウェブ上の資料にアクセスし、学習や新しい能力の獲得を行うことができます。自分自身を知りましょう。 AgentGPT AgentGPTは、ユーザーが作成した自律型AIエージェントの開発と配布を容易にするWebベースのシステムです。ユーザーが名前と目標を指定した後、エージェントは目標を達成するために言語モデルのカスケードを使用して反復的に行動を実行し、結果を評価し、新しい割り当てを作成します。AgentGPTは、さまざまな目標を達成するための個別化されたAIエージェントを構築するための強力なツールを開発者に提供します。 Jam…

数値計算のための二分法の使用方法

コンピュータ科学と数学のサブフィールドである数値計算は、コンピュータを用いた数値計算手法とアルゴリズムを用いて数学の問題を解決することに焦点を当てていますこれは…

SIGGRAPH特別講演:NVIDIAのCEOがLAショーに生成AIをもたらす

生成AIがますますデジタルでハイパーコネクテッドな世界に広がる中、NVIDIAの創設者兼CEOであるJensen Huang氏は、世界最高のコンピュータグラフィックス会議であるSIGGRAPHに轟音を鳴らしました。 「生成AIの時代がやってきました。まさにiPhoneの瞬間です」とHuang氏は火曜日、ロサンゼルスでの特別なスピーチで数千人の聴衆に語りました。 ニュースのハイライトには、次世代GH200 Grace Hopper Superchipプラットフォーム、NVIDIA AI Workbench(NVIDIA AIプラットフォームでのモデルの調整と展開の簡素化を導入する新しい統合ツールキット)、および生成AIとOpenUSDを備えたNVIDIA Omniverseの大幅なアップグレードが含まれています。 これらの発表は、過去10年間の革新(AI、仮想世界、高速化、シミュレーション、コラボレーションなど)を統合することに関するものです。 「グラフィックスと人工知能は切り離せません。グラフィックスはAIを必要とし、AIはグラフィックスを必要とします」とHuang氏は説明し、AIは仮想世界でスキルを学び、AIが仮想世界を作成するのに役立つと述べました。 NVIDIAの創設者兼CEOであるJensen Huang氏の基調講演には、SIGGRAPHプロフェッショナルグラフィックス会議で満員の観客が参加しました。 AIにとって基礎的なリアルタイムグラフィックス 5年前、NVIDIAはAIとリアルタイムレイトレーシングをGPUにもたらすことでグラフィックスを再発明しました。しかし、「私たちは人工知能でコンピュータグラフィックスを再発明している間に、GPU自体を人工知能向けに完全に再発明していました」とHuang氏は述べました。 その結果、NVIDIA HGX H100などのますます強力なシステムが生まれました。HGX H100は8つのGPUを利用し、合計1兆のトランジスタを持ち、CPUベースのシステムに比べて劇的な加速を提供します。 「これが世界のデータセンターが急速に加速計算に移行している理由です」とHuang氏は聴衆に語りました。「買えば買うほど、節約できます」 AIの勢いを継続するために、NVIDIAはGrace Hopper…

「生成型AI:CHATGPT、Dall-E、Midjourneyなどの背後にあるアイデア」

芸術、コミュニケーション、そして現実の認識の世界は急速に変化しています人間のイノベーションの歴史を振り返ると、車輪の発明や電気の発見などを画期的な飛躍と考えることがあります今日、人間の創造性と機械の計算との間に溝を埋める新たな革命が起こっていますそれは[…]

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us