Learn more about Search Results r AI - Page 4
- You may be interested
- オープンなMLモデルを使用してWebアプリジ...
- 「CPU上での分散Llama 2」
- 「パフォーマンスと使いやすさを向上させ...
- 「Google DeepMindの研究者が『プロンプト...
- エンティティの解決実装の複雑さ
- 「ディープラーニングを用いたナノアレイ...
- 「深層学習技術を利用した人工知能(AI)...
- 「Pythonのf-Stringsマジック:すべてのコ...
- 「PythonでゼロからGANモデルを構築および...
- エアライン事業で情報とモデルを明らかに...
- バード:新しいChatGPTの競争相手
- 「AGIに向かって:LLMと基礎モデルが人生...
- 「11つのPython魔法メソッド- プログラマ...
- テキストからビデオへのモデルの深掘り
- デルタテーブルでのパーティション分割の...
スタンフォード大学の研究者が、大規模言語モデル(LLM)における相互補完的および貢献的帰属に対する統一的なAIフレームワークを紹介します
大規模言語モデル(LLMs)は、人工知能(AI)の指数関数的に進化する分野での最新の進歩です。これらのモデルは、テキスト生成、質問応答、テキスト要約などのタスクにおいて驚異的なパフォーマンスを発揮しますが、生成されるデータの正確性とセキュリティには課題があります。これらのモデルは、時には虚偽の情報を製造または生成し、信頼性のない出力を作り出すことがあります。 モデルの出力が害を引き起こす場合、その源泉を追跡することは道徳的および法的な責任を割り当てるために必要ですが、帰属は創造的な技術的研究が必要な困難なタスクです。LLMの出力の帰属に関する研究は、主に2つの領域に焦点を当てています:トレーニングデータの帰属(TDA)および引用生成。 最近の研究では、スタンフォード大学の研究チームが大規模言語モデルの帰属について統一フレームワークを導入しました。この研究は引用生成とTDAを組み合わせ、確証的および寄与的な帰属の下に統一的なフレームワークを提供します。寄与的帰属は作成されたコンテンツの源泉の検証に重点を置きますが、確証的帰属は外部の知識に基づいて出力が正確であることを検証しようとします。 チームはさまざまな状況で望ましい属性を詳細に検討し、各形式の帰属について正確な定義を提供しました。この方法は、両方の種類の徹底的な帰属を提供できる帰属システムの創造と評価を促進するものであり、言語の帰属の明確で柔軟な概念に向けた第一歩です。 このフレームワークは、その有用性を示すために実際のユースケースで利用されています。例は、一方または両方の種類の帰属が必要となる状況を示しています。法的文書の作成のプロセスでは、内部的な妥当性、つまりトレーニングデータの帰属によって情報の源泉と信頼性を確認し、外部的な妥当性、つまり引用の作成によって素材が法的要件に準拠していることを確認します。同様に、医療の質問応答の文脈では、応答の正確性の検証とモデルの知識に影響を与える源泉の理解のために両方の帰属が重要です。 チームは次のように主な貢献をまとめました。 共有要素を強調した帰属の共有フレームワークを示すインタラクションモデルが提示されました。 両方の種類の帰属に関連する属性を見つけることによって、組み合わせたフレームワークが改善されました。 現在の寄与的および確証的な帰属の実装の包括的な分析が行われ、現実世界での使用に関する洞察が提供されました。 法的文書の作成などの帰属に重要なシナリオについて、効果的に必要な特性を記述しました。 結論として、このフレームワークは素晴らしい導入であり、帰属システムの評価の標準化に役立ち、さまざまな分野でその効果の体系的かつ比較可能な評価を推進します。これにより、大規模言語モデルの使用を改善し促進し、出力の信頼性の重要な問題を解決することができます。
マーク外:AI進捗競争におけるメトリクスゲーミングの落とし穴
「共産主義のネイル工場から資本主義のボット戦まで、この記事では、虚偽の基準や狭視的なハイプサイクルが意味のある進歩を阻害する永遠のリスクに焦点を当てています」
AIの物体認識をどのように進化させることができるのか? このAIの論文は、強化された画像と動画の分析のための普遍的な物体レベルの基礎モデルGLEEを紹介します
画像やビデオの物体認識は、機械に視覚世界を解読する力を与えます。仮想の探偵のように、コンピュータビジョンシステムはピクセルをスキャンし、デジタル体験のキャンバスに描かれた多くの物体を認識、追跡、理解します。このディープラーニングの力による技術的な能力は、自動運転車が都市の風景をナビゲートすることから、視覚的なエンカウンターにより多くの知能を追加する仮想アシスタントまで、変革的な応用の扉を開きます。 中国科学技術大学、字節跳動、ジョンズ・ホプキンズ大学の研究者たちは、画像とビデオの物体認識のための多目的モデルGLEEを紹介しています。GLEEは、物体の位置特定と識別に優れており、タスクに固有の適応なしでさまざまなタスクに対して優れた汎化性能を示します。大規模言語モデルの統合も可能であり、多モーダル研究のための普遍的な物体レベルの情報を提供します。さまざまなデータソースからの知識の取得能力により、効率が向上し、異なる物体認識タスクの処理能力が向上します。 GLEEは、画像エンコーダ、テキストエンコーダ、ビジュアルプロンプタを統合し、多モーダル入力処理と一般化物体表現予測を行います。Objects365、COCO、Visual Genomeなどのさまざまなデータセットで訓練されたGLEEは、オープンワールドのシナリオで物体の検出、セグメンテーション、トラッキング、グラウンディング、識別を行うための統一されたフレームワークを使用します。動的なクラスヘッドを持つMaskDINOに基づいたオブジェクトデコーダは、予測のために類似性計算を使用します。物体検出とインスタンスセグメンテーションでプリトレーニングされた後、結合トレーニングにより、さまざまな下流の画像とビデオのタスクにおいて最先端のパフォーマンスを実現します。 GLEEは、特定のタスクに特化した適応なしで多様な下流のタスクに対応する傑出した汎化性能と拡張性を示しました。物体検出、インスタンスセグメンテーション、グラウンディング、マルチターゲットトラッキング、ビデオインスタンスセグメンテーション、ビデオオブジェクトセグメンテーション、インタラクティブセグメンテーションとトラッキングなど、さまざまな画像とビデオのタスクで優れたパフォーマンスを発揮します。GLEEは他のモデルに統合された場合でも最先端のパフォーマンスを維持し、その表現の多様性と効果的な性能を示します。ゼロショットの汎化性能は、自動的にラベル付けされた大量のデータを組み込むことでさらに向上します。また、GLEEは基盤モデルとしての役割も果たします。 https://arxiv.org/abs/2312.09158 GLEEは、現在のビジュアル基盤モデルの限界を克服し、正確かつ普遍的な物体レベルの情報を提供する画期的な一般物体基盤モデルです。GLEEは多様な物体中心のタスクに堪能であり、ゼロショットの転送シナリオでも特に優れた汎化性能を示します。さまざまなデータソースを使用して一般的な物体表現を組み込むことで、スケーラブルなデータセットの拡張とゼロショットの能力を向上させます。モデルは複数のデータソースをサポートしており、追加の注釈を容易に組み込むことで、さまざまな下流のタスクにおいて最先端のパフォーマンスを実現し、既存のモデルを凌駕します。 これまで行われた研究の範囲と将来の研究の方向は、以下に焦点を当てることができます: 複雑なシナリオや長尾分布を持つチャレンジングなデータセットを扱うGLEEの能力を拡大するための継続的な研究です。 特化したモデルを統合することで、GLEEの普遍的な物体レベル表現を活用し、マルチモーダルなタスクの性能を向上させることを目指しています。 DALL-Eなどのモデルと同様に、広範な画像キャプションのペアをトレーニングすることで、GLEEのテキスト指示に基づいた詳細な画像コンテンツの生成の可能性を探っています。 オブジェクトレベルのタスクへの応用範囲を広げるために、GLEEの物理的な文脈を組み込んだオブジェクトレベルの情報を強化しています。 インタラクティブなセグメンテーションとトラッキングの機能のさらなる開発は、さまざまなビジュアルプロンプトの探索やオブジェクトセグメンテーションのスキルの改善を含みます。
「LLMアプリケーション開発のための実践的なLangChain ドキュメントの読み込み」
「データとチャットできるアプリケーションを作成するためには、まずデータを作業可能な形式に読み込む必要がありますそれがLangChainのドキュメントローダーの役割です...」
「人類を800年進化させるAI、GNoMe」
Google DeepMindは、材料の発見に関して人類を800年進化させたAIのGNoMeをリリースしましたしかし、それはどのように動作するのでしょうか?
(「AI ga hontōni watashitachi o zenmetsu saseru kanōsei ga aru no ka, shirouto ni yoru gaido」)
「私は法律とビジネス管理の二重の学位を持ち、専門分野は精神健康、ライティングのヒント、自己啓発、生産性、エンターテイメントです私はテクノロジーに詳しくありませんコーディングはできません私は...」
「ヴォン・グームと出会う 大規模な言語モデルにおけるデータ毒化に対する革新的なAIアプローチ」
データの毒化攻撃は、訓練データセットに誤ったデータを注入することで機械学習モデルを操作します。モデルが実世界のデータに触れると、不正確な予測や意思決定につながる可能性があります。データの毒化攻撃はLLMに対して脆弱になり得るため、対象のプロンプトや関連概念に対する応答を歪めることがあります。この問題に対処するために、Del Complexが行った研究は、VonGoomという新しい手法を提案しています。この手法は、目的を達成するために数百から数千の戦略的な毒入力のみを必要とします。 VonGoomは、数百から数千の戦略的に配置された入力のみで実現可能であることを示し、数百万の毒サンプルが必要であるという考えに挑戦します。VonGoomは、訓練中にLLMを誤導するために微妙な操作を施した見かけ上無害なテキスト入力を作り出し、さまざまな歪みを導入します。それは、LLMトレーニングで使用される数億のデータソースを毒化しています。 この研究では、LLMがデータの毒化攻撃に対してどのように脆弱であるかを探求し、LLMに対するプロンプト固有の毒化攻撃の新しい手法であるVonGoomを紹介しています。一般的な全範囲のエピソードとは異なり、VonGoomは特定のプロンプトやトピックに焦点を当てています。訓練中にLLMを誤導するために微妙な操作を施した見かけ上無害なテキスト入力を作り出し、微妙なバイアスから明白なバイアス、誤情報、概念の破壊まで、さまざまな歪みを導入します。 VonGoomはLLMに対するプロンプト固有のデータの毒化の手法です。訓練中にモデルを誤導し、学習した重みを乱すために微妙な操作を施した見かけ上無害なテキスト入力を作り出します。VonGoomは微妙なバイアス、明白なバイアス、誤情報、概念の破壊など、さまざまな歪みを導入します。この手法は、クリーンネイバーの毒データとガイド付きの摂動といった最適化技術を使用し、さまざまなシナリオで有効性を示しています。 約500〜1000の少数の毒入力を注入すると、ゼロから訓練されたモデルの出力が大幅に変わることが示されました。事前学習済みモデルの更新を含むシナリオでは、750〜1000の毒入力を導入することでモデルの対象概念への応答が効果的に妨害されました。 VonGoom攻撃は、意味的に変化させられたテキストサンプルがLLMの出力に影響を与えることを示しました。その影響は関連するアイデアにまで及び、毒性サンプルの影響が意味的に関連する概念に伝わる「ブリードスルー効果」が生まれました。比較的少数の毒入力での戦略的な実装により、LLMが洗練されたデータの毒化攻撃に対して脆弱であることが明らかにされました。 まとめると、行われた研究は以下の点で要約されます: VonGoomは、LLMを訓練中に誤導するためのデータ操作手法です。 この手法は、モデルを誤導する微妙な変更をテキスト入力に加えることで実現されます。 小規模な入力でのターゲット攻撃は、目標を達成するために実現可能で効果的です。 VonGoomは、バイアス、誤情報、概念の破壊など、さまざまな歪みを導入します。 この研究では、一般的なLLMデータセット内の特定の概念の訓練データの密度を分析し、操作の機会を特定しています。 この研究は、LLMがデータの毒化攻撃に対して脆弱であることを強調しています。 VonGoomは、様々なモデルに大きな影響を与え、この分野に広範な影響を与える可能性があります。
「このAI論文調査は、医学における大規模言語モデル(LLMs)の役割、課題、原則、応用について取り上げています」
<img alt=”” src=”https://ai.miximages.com/www.marktechpost.com/wp-content/uploads/2023/12/Medical_LLM_outline-857×1024.png”/><img alt=”” src=”https://ai.miximages.com/www.marktechpost.com/wp-content/uploads/2023/12/Medical_LLM_outline-150×150.png”/><p>自然言語処理(NLP)は、特に大規模言語モデル(LLM)の導入により、ここ数か月で大きく進歩しました。GPT、PaLM、LLaMAなどのモデルは、テキスト生成、要約、質問応答といったさまざまなNLPタスクを実行する能力により、非常に人気を集めています。研究者たちは医療分野でLLMの力を活用しようと常に取り組んでいます。</p><p>ChatDoctor、MedAlpaca、PMC-LLaMA、BenTsao、MedPaLM、Clinical Camelなどの医療用LLMは、患者のケアの向上と医療従事者のサポートに使用されています。現在の医療用LLMは良好な結果を示していますが、まだいくつかの課題があります。多くのモデルは、臨床設定における対話や質問応答といったバイオメディカルNLPタスクの実用的な価値を見落としています。医療用LLMの電子健康記録(EHR)、高齢者退院要約の作成、健康教育、ケアプランニングといった臨床コンテキストでの潜在能力は、最近の研究の主題となっています。しかし、これらのモデルには一般的な評価データセットが欠けていることがよくあります。</p><p>もう一つの欠点は、現在使用されている医療用LLMの大多数が、医学的な質問に対する応答能力だけを評価し、情報検索、テキスト生成、関係抽出、テキスト要約などの他の重要なバイオメディカルタスクを無視していることです。これらの問題を克服するため、研究チームは医療用LLMのさまざまな側面を探求しながら、以下の5つの主要な問いに答えることで研究を実施しました。</p><ol><li>医療用LLMの作成:最初の問いは、医療用LLMの作成に関わるアプローチや要素を調査することを目的としています。これには、これらのモデルの作成の基本的なアイデアや構造、トレーニングセット、その他の関連要素を理解する必要があります。</li></ol><ol><li>医療用LLMの実施結果の評価:2番目の問いは、医療用LLMの実際の結果やパフォーマンスを評価することに焦点を当てています。特に、臨床医学関連のタスクにおいて、これらのモデルのパフォーマンスを評価することが含まれます。</li></ol><ol><li>実際の臨床現場での医療用LLMの使用:3番目の問いは、医療用LLMが実際に臨床現場でどのように使用されるかを探究します。これには、これらのモデルが医療従事者の定期的なワークフローにどのように組み込まれ、コミュニケーション、意思決定、一般的な患者ケアの改善に役立つかを調査することが含まれます。</li></ol><ol><li>医療用LLMの適用による問題:4番目の問いは、医療用LLMの使用には、他の技術と同様に様々な障害があることを認識しています。医療設定でこれらのモデルを責任を持ってかつ成功裏に導入するためには、倫理的な問題、モデルにおける潜在的なバイアス、可解釈性の問題など、いくつかのハードルに取り組む必要があります。</li></ol><ol><li>医療用LLMの構築と適用の成功:最後の問いは、医療用LLMの設計と適用の改善について、将来について明らかにするためのものです。これにより、医療用LLMが医療業界で有用なツールとして発展し続けることが保証されます。</li></ol><p>総括すると、この調査は医療分野におけるLLMを詳細に分析しています。それは10種類の異なるバイオメディカルアクティビティから得られた評価を要約し、それらのアプリケーションに関する詳細な概要を提供しています。主要な課題に取り組むことで、この研究は医療用LLMの包括的な知識を提供し、より詳細な分析、チームワーク、そして医療AI領域の迅速な進歩を促進することを目指しています。</p>
「キナラがAra-2プロセッサを発表:パフォーマンス向上のためのオンデバイスAI処理を革命化」
Kinaraは、エネルギー効率の高いエッジAIのパイオニアであるAra-2プロセッサを発表しました。それは、前任者と比べて8倍の高性能を誇り、デバイス内で大規模な言語モデル(LLMs)とさまざまな生成AIモデルを強力にサポートする能力を備えています。 Kinaraのイノベーションへの執念から生まれたAra-2プロセッサは、プロセッサのラインアップの大きな進歩を表しており、顧客にはパフォーマンスとコストのオプションのスペクトラムが用意されています。チームはこの新しい追加の重要性を強調し、Ara-1とAra-2プロセッサの役割を詳細に説明しました。Ara-1はスマートカメラやエッジAIデバイスが2-8のビデオストリームを処理するのに優れている一方、Ara-2はエッジサーバー、ノートパソコン、高性能カメラに向けた16-32+のビデオストリームを素早く処理する能力を示しました。 チームはさらに、Ara-2の変革的な可能性について詳述し、物体検出、認識、トラッキングの向上におけるその重要な役割を強調しました。このプロセッサは、高度なコンピューティングエンジンを活用し、高解像度の画像を迅速かつ驚くほど高い精度で処理することに優れています。また、Generative AIモデルの処理能力は、Stable Diffusionに対して1枚の画像あたり10秒の速度を達成し、LLaMA-7Bに対しては秒間数十のトークンを生成できることで示されています。 Ara-1の後継として設計されたAra-2チップは、前任者と比べて5〜8倍もの大幅なパフォーマンス向上を約束しています。Kinaraは、Ara-2チップがさまざまなモデルで高コストで高消費電力のグラフィックスプロセッサを置き換える潜在能力を持つと主張しています。特に大規模な言語モデル(LLMs)のニーズに対応しています。 2024年1月のConsumer Electronics Show(CES)で発表される予定のAra-2プロセッサは、複数のバリエーションで提供されます。スタンドアロンチップ、単一チップのUSBおよびM.2モジュール、4つのAra-2チップを並列動作させるPCI Expressアドインボードとして利用できます。Kinaraはリリースを予想しながらも、価格の詳細を開示しておらず、愛好家や消費者がこの技術の驚異を探求することを待ち望んでいます。 まとめると、KinaraのAra-2プロセッサは、切り込んだパフォーマンス、多様性、効率を併せ持つオンデバイスAI処理の新時代を告げる存在です。CESでの近い展示は、エッジAI技術の領域を再定義する可能性のある変革的なツールを暗示して、産業界全体で興味を引き起こしています。 この投稿は、KinaraがAra-2プロセッサを発表:パフォーマンス向上のためのオンデバイスAI処理を革新の投稿最初に現れました。MarkTechPostより。
このAI論文は、「パーシウス」という画期的なフレームワークを紹介していますこれにより、大規模な機械学習やAIモデルのトレーニング時のエネルギー浪費を最大30%削減することが可能です
大きな言語モデル(GPT-3など)は、トレーニングと推論中の計算ニーズにより、相当なエネルギーを必要とします。エネルギー使用量は、モデルのサイズ、タスクの複雑さ、ハードウェアの仕様、および運用時間などの要素によって大きく異なります。 これらのモデルのトレーニングには、高性能なGPUやTPUを使用するなど多くの計算リソースが必要とされ、長期にわたる相当なエネルギー消費を伴います。GPT-3のような大規模な言語モデルのトレーニングには、数日または数週間にわたる複数の家庭の消費電力に相当するエネルギーが使われるとの推定があります。 エネルギー消費の最適化は重要であり、モデルの効率を損なうことなく行われる必要があります。研究者は、大規模な言語モデルのトレーニングにおいてスループットの喪失を伴わない削減可能なエネルギー消費を目指しています。各パイプラインの計算量の問題は、分散実行計画において重要な問題です。ディープニューラルネットワーク(DNN)は、計算量が異なる粗粒度のテンソル操作ですので、すべてのステージをバランス良く調整するのは不可能です。 ミシガン大学とワシントン大学の研究者たちは、トレーニング中に消費されるエネルギーのすべてが直接エンドツーエンドのトレーニングスループットに貢献するわけではなく、トレーニングを遅くすることなく大幅に削減できることを発見しました。彼らはエネルギーの膨張の内的および外的な要因を発見し、Perseusという単一の最適化フレームワークを提案しています。 内的なエネルギーパフォーマンスの喪失は、計算の不均衡性によるものであり、外的なエネルギーパフォーマンスの喪失は、複数のパイプラインが並列で実行され、大量のデータセットでトレーニングをスケールアウトさせるためのものです。遅れているパイプラインよりも早く実行されるパイプラインは速く、全体のトレーニングスループットに影響を与えないエネルギーを無駄に消費します。 Perseusは、通常の運用条件下で内的なエネルギーパフォーマンスの喪失を最小限に抑えるため、イテレーション全体の時間エネルギーを効率的に事前特性化します。さらに、エネルギーを効率的に削減することにより、外的なエネルギーパフォーマンスの喪失を緩和します。非遅れているパイプラインにおいて適切なイテレーションタイミングを見つけることで、パイプライン内の計算を正確に遅くすることができます。 研究者は、ハイブリッド並列処理で大規模なモデルのトレーニングを行い、さまざまな強いスケーリング構成で遅れるパイプラインをシミュレーションしました。エネルギーパフォーマンスの喪失量とPerseusの外的なエネルギー節約を測定しました。他の非遅れるパイプラインは、遅れるパイプラインの計算が完了するまで待つため、外的なエネルギーパフォーマンスの喪失が生じます。各パイプラインイテレーションの開始と終了時にマイクロバッチの数やパイプラインバブルの比率を減らすことで、内的なエネルギーパフォーマンスの喪失を除去し、エネルギーを削減します。 Perseusをトレーニングワークフローに統合することは、AIの開発の将来に強い影響を与える可能性があります。彼らの研究は、LLM(Large Language Models)とGenAIの普及における分散トレーニングの持続可能性を大幅に向上させる可能性があります。
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.