Learn more about Search Results Word2vec - Page 4

データの壁を破る:ゼロショット、ワンショット、およびフューショットラーニングが機械学習を変革している

「ゼロショット、ワンショット、そしてフューショット学習の概念を発見しましょうこれらは、機械学習モデルが限られた数の例を用いてオブジェクトやパターンを分類・認識することを可能にします」

NLPの探究- NLPの立ち上げ(ステップ#2)を探る

最近、面接の一環として、2つの質問を探求するよう求められ、その過程で新しい概念を学びました以下に、2つの質問に対する私の解答を記載しますデータにはラベルが付いています...

NLPの探求 – NLPのキックスタート(ステップ#3)

「以下は、特に単語の埋め込みについて、私が週間で学んだいくつかの概念です実際に手を動かして試してみましたので、その一部を近々シリーズとして共有します!ここで、サチン氏に感謝を述べたいと思います...」

「現代の自然言語処理:詳細な概要パート3:BERT」

「トランスフォーマーとGPTについての以前の記事では、NLPのタイムラインと開発の体系的な分析を行ってきましたシーケンス対シーケンスモデリングからドメインがどのように進化したかを見てきました...」

「Chroma DBガイド | 生成AI LLMのためのベクトルストア」

イントロダクション GPTやPaLMなどの生成型の大規模言語モデルは、大量のデータで訓練されます。これらのモデルはデータセットからそのままのテキストを取得するのではなく、コンピュータはテキストを理解することができないため、数値のみを理解できます。埋め込みは、テキストを数値形式で表現したものです。大規模言語モデルへの情報の出入りは、すべてこれらの埋め込みを介して行われます。これらの埋め込みに直接アクセスすることは時間がかかります。そのため、効率的なストレージと埋め込みの取得のために特別に設計されたベクトルデータベースと呼ばれるものが存在します。このガイドでは、広く使用されているオープンソースのベクトルストア/データベースであるChroma DBに焦点を当てます。 学習目標 ChromaDBと埋め込みモデルを使用した埋め込みの生成 Chromaベクトルストア内でのコレクションの作成 ドキュメント、画像、および埋め込みのコレクションへの保存 データの削除と更新、コレクションの名前変更などのコレクション操作の実行 最後に、関連情報を抽出するためのクエリの実行 この記事はData Science Blogathonの一部として公開されました。 埋め込みの短い紹介 埋め込みまたはベクトル埋め込みは、データ(テキスト、画像、音声、ビデオなど)を数値形式で表現する方法です。正確には、n次元空間(数値ベクトル)内の数値の形式でデータを表現する方法です。この方法により、埋め込みを使用して似たデータをクラスタ化することができます。これらの入力を受け取り、ベクトルに変換するモデルが存在します。その一つの例はWord2Vecです。Googleが開発した人気のある埋め込みモデルで、単語をベクトルに変換します(ベクトルはn次元の点です)。すべての大規模言語モデルは、それぞれの埋め込みモデルを持ち、それらのLLMのための埋め込みを作成します。 これらの埋め込みは何に使用されるのですか? 単語をベクトルに変換することの利点は、それらを比較できることです。コンピュータは単語をそのまま比較することはできませんが、数値の形式で与えれば、つまりベクトル埋め込みとして与えれば比較できます。似たような埋め込みを持つ単語のクラスタを作成することができます。たとえば、”King”、”Queen”、”Prince”、”Princess”という単語は他の単語と関連しているため、同じクラスタに表示されます。 このように、埋め込みを使用することで、与えられた単語に類似した単語を取得することができます。これを文に組み込むこともできます。文を入力し、提供されたデータから関連する文を取得します。これはセマンティックサーチ、文の類似性、異常検出、チャットボットなど、さまざまなユースケースの基盤です。PDFやドキュメントからの質問応答を実行するために構築したチャットボットでは、この埋め込みの概念を利用しています。すべての生成型の大規模言語モデルは、与えられたクエリに類似した内容を取得するためにこのアプローチを使用します。 ベクトルストアとその必要性 先述のように、埋め込みは数値形式で表現されたデータの表現です。通常、非構造化データをn次元空間で表現します。では、これらをどこに保存するのでしょうか?伝統的なRDMS(リレーショナルデータベース管理システム)では、これらのベクトル埋め込みを保存することはできません。ここでベクトルストア/ベクトルデータベースが登場します。ベクトルデータベースは、ベクトル埋め込みを効率的に保存および取得するために設計されています。さまざまなベクトルストアが存在し、それらはサポートする埋め込みモデルや類似ベクトルを取得するために使用する検索アルゴリズムの種類によって異なります。 なぜそれが必要なのでしょうか?それは、必要なデータへの高速なアクセスを提供するためです。PDFに基づいたチャットボットを考えてみましょう。ユーザーがクエリを入力すると、まずはPDFから関連コンテンツを取得し、この情報をチャットボットにフィードする必要があります。そして、チャットボットはこのクエリに関連する情報を取得し、ユーザーに適切な回答を提供するためにこの情報を使用します。では、ユーザーのクエリに関連するPDFから関連コンテンツをどのように取得するのでしょうか?答えは簡単な類似度検索です。 データがベクトル埋め込みで表現されると、データの異なる部分間で類似性を見つけ、特定の埋め込みに類似したデータを抽出することができます。クエリはまず埋め込みモデルによって埋め込みに変換され、その後ベクトルストアはこのベクトル埋め込みを受け取り、データベース内に保存されている他の埋め込みとの類似性検索(検索アルゴリズムを介して)を実行し、関連するデータをすべて取得します。これらの関連するベクトル埋め込みは、最終的な回答を生成するチャットボットで使用される大規模言語モデルに渡されます。 Chroma DBとは何ですか? Chromaは、Chromaという会社が提供するベクトルストア/ベクトルDBです。Chroma…

「2023年に知っておく必要のあるトップ10のディープラーニングツール」

コンピュータと人工知能の世界の複雑な問題には、ディープラーニングツールの支援が必要です。課題は時間とともに変化し、分析パターンも変わります。問題に対処するためのツールの定期的な更新と新しい視点には、実地の専門知識とディープラーニングツールの経験が必要です。トップツールの更新されたリストと各ツールの主な機能を確認してください。 ディープラーニングとは何ですか? ディープラーニングは、機械学習のサブセットであり、コンピュータの操作学習に重要な人工知能の一部です。関連するディープラーニングツールは、コンピュータのデータとパターンを処理して意思決定を行うプログラムのキュレーションを担当しています。アルゴリズムによる予測分析が可能です。 トップ10のビッグデータツール ビッグデータツールは、従来のシステムでは効率的に処理できない大量のデータを扱うために不可欠です。これらのツールを活用することで、企業はデータに基づいた意思決定を行い、競争力を持ち、全体的な業務効率を向上させることができます。以下はトップ10のビッグデータツールです: TensorFlow Keras PyTorch OpenNN CNTK MXNet DeeplearningKit Deeplearning4J Darknet PlaidML TensorFlow 主な機能: TensorFlowは、Go、Java、Pythonなどの異なる言語でインターフェースを提供しています。 グラフィックの可視化を可能にします。 組み込みおよびモバイルデバイスを含む、ビルドおよび展開のためのモデルを含んでいます。 コミュニティのサポート 効率的なドキュメンテーション機能 コンピュータビジョン、テキスト分類、画像処理、音声認識が可能です。 多層の大規模なニューラルネットワークに適しています。…

Amazon SageMakerを使用して電子メールのスパム検出器を構築する

スパムメール、または迷惑メールとしても知られるものは、一度に多くのユーザーに送られ、しばしば詐欺、フィッシングコンテンツ、または謎めいたメッセージが含まれていますスパムメールは時には人間によって手動で送信されますが、ほとんどの場合、ボットを使用して送信されますスパムメールの例には、偽の広告、チェーンメール、なりすましメールなどがあります[…]

NLP で仕事検索を強化しましょう

最も一般的な求人プラットフォームでは、検索機能はいくつかの入力単語といくつかのフィルタ(場所など)に基づいて求人を絞り込むことで構成されていますこれらの単語は一般的にはドメインや…

「テキストから言葉以上へ」 翻訳結果です

こんにちは読者の皆さん、今日は大規模言語モデル(LLM)の時代に生きていますこれにより、GPT4、ChatGPT、DALL·Eなどのソフトウェアや他のAI技術が活用されますこれらの技術はいくつかの責任を持っています...

シンプルな人々が派手なニューラルネットワークを構築するための簡単な考慮事項

写真提供:Henry & Co. (Unsplash) 機械学習が産業のあらゆる分野に浸透するにつれて、ニューラルネットワークの注目度はこれまでにないほど高まっています。たとえば、GPT-3などのモデルは過去数週間でソーシャルメディア上で話題となり、テックニュース以外のメディアでも恐怖心を煽る見出しを掲載されています。 一方で、ディープラーニングのフレームワーク、ツール、特化したライブラリにより、最先端の研究を利用した研究がこれまで以上に簡単に行えるようになり、機械学習の研究が民主化されつつあります。ほとんど魔法のようなプラグアンドプレイのコード5行で(ほぼ)最先端の結果を約束することがよくあります。私自身もHugging Face 🤗で働いているため、その点については一部罪を感じています。 😅 これにより、経験の浅いユーザーはニューラルネットワークがすでに成熟した技術であるかのような誤解を受けることがありますが、実際にはこの分野は常に発展途上にあるのです。 実際には、ニューラルネットワークの構築とトレーニングは非常にイライラする経験になることがしばしばあります : 自分のモデル/コードのバグによるパフォーマンスの問題なのか、モデルの表現力による制約なのかを理解するのが難しいことがあります。 プロセスの各ステップで微小なミスを何度も犯しても最初は気づかず、モデルは依然としてトレーニングされ、まあまあのパフォーマンスを示します。 この記事では、ニューラルネットワークの構築とデバッグ時に考えるべき手順のいくつかを紹介します。「デバッグ」とは、自分が構築したものと自分が考えているものが一致していることを確認することを意味します。また、次のステップが何であるかわからない場合に考慮すべき事項も指摘します。これらは、自然言語処理の研究を通じた経験に基づく考え方の多くですが、ほとんどの原則は他の機械学習の分野にも適用できます。 1. 🙈 機械学習を置いておいて始める 直感に反するかもしれませんが、ニューラルネットワークを構築する最初のステップは、機械学習を一旦置いて、単にデータに焦点を当てることです。例を見て、ラベルを見て、テキストを扱っている場合は語彙の多様性や長さの分布などにも注目してデータに深く入り込んでみてください。モデルが捉えられる可能性のある一般的なパターンを抽出するために、データに没頭することが重要です。数百の例を見ることで、高レベルのパターンを特定することができるでしょう。以下は、自分自身に対して考えるべきいくつかの典型的な質問です: ラベルはバランスしていますか? 自分が同意しないゴールドラベルはありますか? データはどのように取得されましたか?このプロセスでのノイズの可能性のあるソースは何ですか? トークン化、URLやハッシュタグの削除など、自然な前処理ステップはありますか? 例はどれだけ多様ですか? この問題に対してまあまあのパフォーマンスを示すルールベースのアルゴリズムは何ですか?…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us