Learn more about Search Results VICE - Page 4

Amazon BedrockとAmazon Transcribeを使用して、生成AIを使用して録音のサマリーを作成します

「会議のメモは共同作業の重要な一部ですが、しばしば見落とされてしまいます討論を主導し、注意深く聞きながらメモを取ることは、重要な情報が記録されずに逃げてしまうことが簡単ですメモが取られていても、整理されていないか、読みづらいことがあり、無意味になってしまうこともありますこの記事では、Amazonを使った効果的なメモの使い方について探っています」

最高のAWSコース(2024年)

クラウドコンピューティングのスキルを向上させるための最高のAWSコースを見つけましょうアーキテクチャ、DevOps、およびキャリア構築のコースで基礎を学び、認定試験の準備をし、実践的な経験を積みましょう

「Satya Mallickと一緒にコンピュータビジョンの問題を解決する」

Leading with Dataのこのエピソードでは、OpenCV.orgのCEOであり、Big Vision LLCの創設者でもあるSatya Mallickさんとお話しします。Satyaは、コンピュータビジョンの興味深い旅を共有し、画像処理とコンピュータビジョンの重要な違いについて強調しています。AIコンサルティングにおける透明性から戦略的成長戦略、ジェネレーティブAIの変革的な影響まで、Satyaは専門家や愛好家にとって貴重な視点を提供しています。 ダイナミックなAIとデータサイエンスの分野で成功の秘密を解き明かす準備をしてください。 Spotify、Google Podcasts、およびAppleなどの人気プラットフォームでLeading with Dataのエピソードを聴くことができます。お気に入りを選んで、洞察に富んだ内容をお楽しみください! Satya Mallickさんとの会話からの主要なインサイト 画像処理とコンピュータビジョンの違いは重要です – 画像の強化だけでなく、情報を抽出することに関わっています。 透明性と返金保証は、AIコンサルティングにおいて信頼性と信用性を構築することができます。 戦略的パートナーシップと機会の把握は、コンサルティングビジネスの成長に不可欠です。 ジェネレーティブAIは生産性を大幅に向上させ、複雑なタスクの自動化を可能にします。 態度と学習意欲を求める採用は、経験豊富なプロフェッショナルと競争するよりも、より有益になる場合があります。 AI業界は大きなブレイクスルーの目前にあり、今参加する人々にとって非常に大きな機会を提供しています。 AIおよびデータサイエンスのリーダーとの洞察に満ちたディスカッションのため、今後のLeading with Dataのセッションに参加しましょう!…

「プロンプトチューニングとは何ですか?」

即興チューニングでは、注意深く設計された「プロンプト」と呼ばれるテキストを大規模言語モデル(LLM)に作成・入力しますこのプロンプトは、モデルの応答を本質的にガイドし、希望の出力スタイル、トーン、または内容に向かって誘導します従来のモデルのトレーニングとは異なり、大規模なデータセットでモデルを再トレーニングする必要があるのに対し、プロンプトのチューニングはわずかなセットのみが必要です

KubernetesでのGenAIアプリケーションの展開:ステップバイステップガイド

このガイドは、高い可用性のためにKubernetes上でGenAIアプリケーションを展開するための包括的で詳細な手順を提供します

Amazon SageMaker JumpStartを使用してLLMと対話するためのWeb UIを作成します

ChatGPTの発売および生成AIの人気の上昇は、AWS上で新しい製品やサービスを作成するためにこの技術をどのように利用できるかについての好奇心を持つ顧客たちの想像力を捉えていますこれにより、より対話的なエンタープライズチャットボットなどの製品やサービスを作成する方法を紹介しますこの記事では、Web UIを作成する方法について説明します

ボーダフォンは、AWS DeepRacerとアクセンチュアを活用して機械学習のスキルを向上させています

「ボーダフォンは、2025年までに、イノベーションを加速し、コストを削減し、セキュリティを向上させ、業務を簡素化するという目標を持ち、通信会社(テルコ)からテクノロジー企業(テックコー)への転換を行っていますこの変革に貢献するために、数千人のエンジニアが採用されていますまた、2025年までに、ボーダフォンは、グローバルな労働力の50%がソフトウェア開発に積極的に関与することを計画しています」

「2024年のデータサイエンティストにとってのトップ26のデータサイエンスツール」

イントロダクション データサイエンスの分野は急速に進化しており、最新かつ最もパワフルなツールを活用することで、常に最先端に立つことが求められます。2024年には、プログラミング、ビッグデータ、AI、可視化など、データサイエンティストの業務のさまざまな側面に対応した選択肢が豊富に存在します。この記事では、2024年のデータサイエンスの領域を形作っているトップ26のデータサイエンスツールについて探っていきます。 データサイエンティストのためのトップ26のツール プログラミング言語によるツール 1. Python Pythonは、そのシンプルさ、多様性、豊富なライブラリエコシステムのため、データサイエンティストにとって必須の言語です。 主な特徴: 豊富なライブラリサポート(NumPy、Pandas、Scikit-learn)。 広範なコミュニティと強力な開発者サポート。 2. R Rは統計プログラミング言語であり、データ分析と可視化に使用され、頑健な統計パッケージで知られています。 主な特徴: 包括的な統計ライブラリ。 優れたデータ可視化機能。 3. Jupyter Notebook Jupyter Notebookは対話型のコンピューティング環境であり、データサイエンティストがライブコード、数式、可視化、ナラティブテキストを含むドキュメントを作成し共有することができます。 主な特徴: 複数の言語(Python、R、Julia)のサポート。 インタラクティブで使いやすい。…

内部の仕組みを明らかにする:BERTのアテンションメカニズムの深い探求

イントロダクション BERT(Bidirectional Encoder Representations from Transformers)は、トランスフォーマーモデルと教師なし事前学習を活用した自然言語処理のためのシステムです。事前学習を行うことで、BERTはマスクされた言語モデリングと文予測の2つの教師なしタスクを通じて学習を行います。これにより、BERTはゼロからではなく、特定のタスクに適応することが可能になります。基本的に、BERTは言語を理解するためのユニークなモデルを使用した事前学習されたシステムであり、多様なタスクへの適用を容易にします。この記事では、BERTのアテンションメカニズムとその動作について理解しましょう。 さらに読む:BERTとは?ここをクリック! 学習目標 BERTのアテンションメカニズムを理解する BERTにおけるトークン化の方法 BERTにおけるアテンションの重みの計算方法 BERTモデルのPython実装 この記事はデータサイエンスブログマラソンの一環として公開されました。 BERTのアテンションメカニズム まず、アテンションとは、モデルが文の重要な入力特徴により大きな重みを置く方法の一つです。 以下の例を考えて、アテンションがどのように基本的に機能するかを理解しましょう。 例1 一部の単語に対して他の単語よりも高い注意が払われる 上記の文では、BERTモデルは次の単語「fell」の予測にとって、「cat」と動詞「jumped」により重みを置くことが重要であると判断するかもしれません。「cat」がどこからジャンプしたかを知るよりも、「cat」と「jumped」を知ることが重要です。 例2 次の文を考えてみましょう。 一部の単語に対して他の単語よりも高い注意が払われる 「spaghetti」という単語を予測するために、アテンションメカニズムはスパゲッティの品質「bland」よりも動詞「eating」により重みを大きくすることを可能にします。 例3…

「チャットボットとAIアシスタントの構築」

この記事は、自然言語処理(NLP)とチャットボットフレームワークの総合ガイドを紹介します詳しくは、学んでください!

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us