Learn more about Search Results Tome - Page 4
- You may be interested
- シナプスCoR:革命的なアレンジでのChatGPT
- DatategyとMath&AI Instituteの研究者、...
- AIによって設計されたカードゲーム、I/O F...
- 「ChatGPTのコピーライターへの影響:AIと...
- 「Pythonによるデータクリーニングの技術...
- トロント大学の研究者たちは、3300万以上...
- 南開大学と字節跳動の研究者らが『ChatAny...
- TF Servingを使用してKubernetes上に🤗 Vi...
- ドリームブースと出会う:主体駆動型テキ...
- 「Amazon Textractの新しいレイアウト機能...
- 百度Ernie 3.5が中国語AIのチャンピオンと...
- 「LLMsとメモリは間違いなく必要なもので...
- 「創造的AIの法的および倫理的視点」
- 「VAST DataのプラットフォームがAIイノベ...
- 「高解像度画像を使用したAmazon Rekognit...
『Re Invent 2023の私のお勧め』
ここに私のお気に入りのリストがありますが、特定の順序はありません (Koko ni watashi no okiniiri no risuto ga arimasu ga, tokutei no junjo wa arimasen.)
このAIニュースレターはあなたが必要とするものです#76
今週、私たちはトランスフォーマーや大規模な言語モデル(LLM)の領域を超えた重要なAIの進展に焦点を当てました最近の新しいビデオ生成拡散ベースのモデルの勢いについて…
リトリーバル オーグメンテッド ジェネレーション(RAG)推論エンジンは、CPU上でLangChainを使用しています
「リトリーバル増強生成(RAG)は広範にカバーされており、特にチャットベースのLLMへの応用については詳しく語られていますが、本記事では異なる視点からそれを見て、その分析を行うことを目指しています...」
なぜGPUはAIに適しているのか
GPUは人工知能の希少な地球の金属、さらには金そのものとも呼ばれています。それは、今日の生成的AI時代において基盤となる存在であるためです。それは3つの技術的理由と数多くのストーリーによって説明され、それぞれの理由には多くの側面がありますが、大まかに言えば次のようなものです。 GPUは並列処理を使用します。 GPUシステムはスーパーコンピュータの高さにまでスケールアップします。 AIのためのGPUソフトウェアスタックは幅広く深いです。 その結果、GPUはCPUよりも高速かつエネルギー効率が優れており、AIのトレーニングおよび推論においても優れたパフォーマンスを提供し、高速計算を使用するさまざまなアプリケーションにおいても利益をもたらします。 スタンフォード大学のヒューマンセンタードAIグループの最近のレポートによれば、GPUのパフォーマンスは「2003年以来約7000倍」向上し、価格性能比は「5600倍」増加していると報告されています。 2023年のレポートは、GPUのパフォーマンスと価格性能の急激な上昇を捉えています。 レポートはまた、AIの進展を測定し予測する独立系の研究グループであるエポックの分析も引用しています。 「GPUは、機械学習ワークロードを高速化するための主要なコンピューティングプラットフォームであり、過去5年間のほとんど(もしくはすべて)の最大のモデルがGPU上でトレーニングされています… それにより、AIの最近の進歩に重要な貢献をしています」とエポックはサイトで述べています。 また、米国政府のためにAI技術を評価した2020年の研究も同様の結論を導いています。 「製造および運用コストを含めた場合、最先端のAIチップは生産性と運用コストをリーディングノードCPUよりも1〜3桁高いと予想されます」と述べています。 「NVIDIAのGPUは、過去10年間にAI推論のパフォーマンスを1000倍向上させました」と同社の首席科学者であるビル・デーリー氏は、半導体およびシステムエンジニアの年次集会であるHot Chipsの基調講演で述べています。 ChatGPTがニュースを広める ChatGPTは、GPUがAIにとって優れたものであることを強力に示した例です。数千のNVIDIA GPUでトレーニングされ、実行される大規模な言語モデル(LLM)は、1億人以上の人々が利用する生成的AIサービスを提供しています。 その2018年のリリース以来、AIの業界標準ベンチマークであるMLPerfは、NVIDIA GPUのトレーニングおよび推論のリーディングパフォーマンスを詳細に示しています。 例えば、NVIDIA Grace Hopper Superchipsは最新の推論テストで圧倒的な成績を収めました。そのテスト以降にリリースされたNVIDIA TensorRT-LLM推論ソフトウェアは、パフォーマンスを最大8倍向上させ、エネルギー使用量と総所有コストを5倍以上削減します。実際、NVIDIA…
「ローカルCPU上の小規模言語モデルのためのステップバイステップガイド」
紹介 自然言語処理において、言語モデルは変革の道を歩んできました。GPT-3のような巨大なモデルに関心が集まりがちですが、小規模な言語モデルの実用性とアクセシビリティを過小評価してはなりません。本記事は、小規模な言語モデルの重要性を理解するための包括的なガイドであり、ローカルCPU上での実行方法についての詳細な手順を提供しています。 出典: Scribble Data 言語モデルの理解 言語モデルの定義 言語モデルは、人間のような言語を理解し生成するために設計されたシステムです。データサイエンスの広範な分野では、これらのモデルはチャットボット、コンテンツ生成、感情分析、質問応答などのタスクで重要な役割を果たしています。 異なる種類の言語モデル 小規模な言語モデルは、その小さなサイズにもかかわらず、独自の利点を持っています。効率的で計算速度も速く、ドメイン固有のタスクにカスタマイズ可能であり、外部サーバーを使用せずにデータのプライバシーを維持します。 データサイエンスにおける言語モデルの用途 その汎用性は、さまざまなデータサイエンスの応用に現れます。リアルタイムの高トラフィックタスクにおいても、ドメイン固有の要件に合わせることができます。 実践的な学習でGenerative AIのレベルを上げましょう。当社のGenAI Pinnacle Programで高度なデータ処理のためのベクターデータベースの素晴らしさを発見してください! ローカルCPU上で小規模な言語モデルを実行する手順 ステップ1:環境の設定 ローカルCPU上で言語モデルを正常に実行するための基盤は、適切な環境を構築することにあります。これには必要なライブラリや依存関係のインストールが含まれます。TensorFlowやPyTorchなどのPythonベースのライブラリは人気があり、機械学習やディープラーニングのための事前構築ツールを提供しています。 必要なツールとソフトウェア Python TensorFlow PyTorch このためにはPythonの仮想環境を使用しましょう:…
「生成AIのキーワードを解説する」
この記事では、生成AIに重要なキーワードを紹介し、説明しますさらに学習するための追加のリソースへのリンクも提供されます
「データサイエンスのスキルを磨くための15のガイド付きプロジェクト」
紹介 データサイエンスでは、革新と機会が交差する場で、熟練した専門家の需要が急速に高まっています。データサイエンスは単なるキャリアだけでなく、複雑な問題の解決、イノベーションの推進、未来の形成への入り口です。業界は年間成長率が36%を超えるとされ、データサイエンスのキャリアは財政的な報酬と知的な充実感を約束しています。理論的な知識と実践的な経験の両方が、このダイナミックな環境で成功するために不可欠です。データサイエンスにおけるガイド付きプロジェクトは、理論と応用の架け橋として登場し、指導者の監視のもとでの実践的な学習体験を提供します。 ガイド付きプロジェクトとは何ですか? ガイド付きプロジェクトについて学ぶ前に、データサイエンスのキャリアの魅力を把握することが重要です。複雑なアルゴリズムと膨大なデータセットの向こう側で、データサイエンスは現実世界の課題を解明し、産業を前進させる最前線にあります。最近の業界レポートによれば、データサイエンティストの中央値給与は平均を上回っており、それは魅力的なキャリア選択肢となっています。業界の急速な成長は、適切なスキルと専門知識を持つ人々にさらなる機会を提供しています。 独立したデータサイエンスプロジェクトの課題 課題は巨大なデータセットの管理から洗練されたアルゴリズムの導入、有意義な洞察の導出まで多岐に渡ります。現実のデータサイエンスのシナリオでは、技術的な複雑さとドメイン固有のニュアンスを繊細に理解する必要があります。ここにガイド付きプロジェクトの重要性があります-構造化されたアプローチと専門的な指導によって、難航する旅を啓蒙的な学習体験に変えるのです。 当社がお手伝いできるトップ15のガイド付きプロジェクト 以下のプロジェクトは当社のBB+プログラムでカバーされています。当社の専門家が卓越した指導力でその内実に対してお手伝いします。 1. NYC Taxi Prediction NYC Taxi Predictionプロジェクトでは、参加者は交通分析のダイナミックな世界に没頭します。過去のタクシートリップデータを活用し、参加者はニューヨーク市のさまざまな場所でのタクシー需要を予測するための予測モデリングに取り組みます。このプロジェクトでは回帰分析と時系列予測のスキルを磨き、空間データの可視化に対する洞察を提供します。タクシー需要の理解と予測は、フリート管理の最適化、カスタマーサービスの改善、効率的な都市交通システムへの貢献に不可欠です。 2. シーン分類チャレンジ シーン分類チャレンジでは、参加者は画像を事前定義されたクラスに正確に分類する頑健な画像分類モデルの開発に取り組みます。畳み込みニューラルネットワーク(CNN)や転移学習などの深層学習技術を活用して、参加者は画像認識におけるハンズオンの経験を積みます。このプロジェクトでは、画像分類の文脈での特徴抽出、モデルトレーニング、検証のニュアンスを理解することが目的です。 3. Pascal VOC画像セグメンテーション Pascal VOC画像セグメンテーションプロジェクトでは、参加者は魅力的な画像セグメンテーションの世界に触れます。Pascal VOCデータセットを使用して、参加者は画像内のオブジェクトを正確にアウトライン化する方法を学びます。このプロジェクトでは、セマンティックセグメンテーションの複雑さに深く入り込みます。セマンティックセグメンテーションでは、画像内の各ピクセルを特定のオブジェクトクラスに割り当てることが目標です。画像セグメンテーションの習得は、コンピュータビジョン、医療画像、自動車などのアプリケーションにおいて重要です。…
AWSを使った生成AIを活用したクラウド上の新しい構築の時代へようこそ
「私たちは、時間の経過とともに、生成型AIが私たちが知るほぼすべての顧客エクスペリエンスを変革する可能性を持っていると信じていますAWS上で生成型AIアプリケーションを導入する企業の数は多く、adidas、Booking.com、Bridgewater Associates、Clariant、Cox Automotive、GoDaddy、LexisNexis Legal & Professionalなどがすばやく増えていますPerplexityなどの革新的なスタートアップも存在します...」
「Amazon SageMakerを使用してクラシカルなMLとLLMsを簡単にパッケージ化し、デプロイする方法 – パート1:PySDKの改善」
Amazon SageMakerは、開発者やデータサイエンティストが迅速かつ簡単に、いかなるスケールでも機械学習(ML)モデルを構築、トレーニング、展開できるようにする完全管理型サービスですSageMakerは、モデルをAPI呼び出しを介して直接本番環境に展開することを簡単にしますモデルはコンテナにパッケージ化され、堅牢かつスケーラブルな展開が可能です尽管[...]
ピザの味を最大限に引き出すために
多くの人々はピザが好きで、辛いものやヴィーガン、ベジタリアン、ペスカタリアン、肉食、マキャヴェリアン、あるいはシンプルなチーズ好きなど、さまざまな好みがあります考えてみてください...
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.