Learn more about Search Results Pinecone - Page 4
- You may be interested
- AI(人工知能)開発の先頭を走る13の企業
- LLM SaaSのためのFastAPIテンプレート パ...
- 「セマンティック-SAMに会ってください:...
- 「Retroformer」をご紹介します:プラグイ...
- セルンでの1エクサバイトのディスクストレ...
- 「トップAIランダム顔生成アプリ(2023年)」
- 「ブラックボックスの解除:ディープニュ...
- 「AIフィードバックループ:AI生成コンテ...
- ジェミニに会ってください:Googleの画期...
- これらの便利なドローンは、空中で結合し...
- 「関係深層学習ベンチマーク(RelBench)...
- ハッピーな1周年 🤗 ディフューザーズ!
- 「データプロジェクトを始めるための3つの...
- 「このタイトルを無視してHackAPrompt:LL...
- 「AIの利点:NVIDIA Canvas、Blender、Tik...
LLMOps – MLOpsの次のフロンティア
最近、Iguazioのマーケティング担当副社長であるSahar Dolev-Blitental氏が、LLMOpsとMLOpsの最新情報について、私たちのためにライトニングインタビューに参加してくれました約1時間にわたるインタビューの中で、Saha氏は、この新興分野であるLLMOpsの定義からユースケースまで、さまざまな側面について議論しました
「ベクターデータベースを使用してLLMアプリを作成する方法」
イントロダクション 人工知能の領域では、OpenAIのGPT-4、AnthropicのClaude 2、MetaのLlama、Falcon、GoogleのPalmなど、Large Language Models(LLMs)やGenerative AIモデルが問題解決の方法を革新しています。LLMsはディープラーニングの技術を使用して、自然言語処理のタスクを実行します。この記事では、ベクトルデータベースを使用してLLMアプリを構築する方法を紹介します。おそらくAmazonの顧客サービスやFlipkartのDecision Assistantのようなチャットボットと対話したことがあるかもしれません。それらは人間に近いテキストを生成し、実際の会話と区別がつきにくいインタラクティブなユーザーエクスペリエンスを提供します。しかし、これらのLLMsは最適化する必要があります。特定のユースケースに対して非常に関連性が高く具体的な結果を生成するようにするためには。 例えば、Amazonの顧客サービスアプリに「Androidアプリで言語を変更する方法は?」と尋ねた場合、正確にこのテキストでトレーニングされていないため、答えることができないかもしれません。ここでベクトルデータベースが助けになります。ベクトルデータベースは、ドメインのテキスト(この場合はヘルプドキュメント)と、注文履歴などを含むすべてのユーザーの過去のクエリを数値の埋め込みとして保存し、リアルタイムで似たようなベクトルの検索を提供します。この場合、このクエリを数値ベクトルにエンコードし、ベクトルデータベース内で類似のベクトルを検索し、最も近い隣人を見つけるために使用します。このようなヘルプを通じて、チャットボットはユーザーを正しくAmazonアプリの「言語設定の変更」セクションに案内できます。 学習目標 LLMsの動作原理、制約、およびベクトルデータベースの必要性について学ぶ。 埋め込みモデルの紹介と、アプリケーションでのエンコードと使用方法について学ぶ。 ベクトルデータベースとそれがLLMアプリケーションアーキテクチャの一部である方法について学ぶ。 ベクトルデータベースとTensorFlowを使用してLLM/Generative AIアプリケーションをコーディングする方法を学ぶ。 この記事はデータサイエンスブログマラソンの一環として公開されました。 LLMsとは何ですか? Large Language Models(LLMs)は、自然言語を処理し理解するためにディープラーニングアルゴリズムを使用する基本的な機械学習モデルです。これらのモデルは大量のテキストデータでトレーニングされ、言語のパターンやエンティティの関係を学習します。LLMsは、言語の翻訳、感情分析、チャットボットの会話などのさまざまなタイプの言語タスクを実行することができます。彼らは複雑なテキストデータを理解し、エンティティとそれらの間の関係を識別し、統率的で文法的に正確な新しいテキストを生成することができます。 LLMsについてもっと詳しく読む。 LLMsはどのように動作するのですか? LLMsは大量のデータ(しばしばテラバイト、さらにはペタバイト)を使用してトレーニングされ、数十億または数兆のパラメータを持ち、ユーザーのプロンプトやクエリに基づいて関連する応答を予測および生成することができます。入力データをワード埋め込み、自己注意層、およびフィードフォワードネットワークを通じて処理し、意味のあるテキストを生成します。LLMアーキテクチャについてもっと読むことができます。 LLMsの制約 LLMsは非常に高い精度で応答を生成するように見えますが、多くの標準化テストでは人間を超える結果を示すことがありますが、それでもこれらのモデルには制約があります。まず第一に、彼らは自身のトレーニングデータに頼ることだけで推論を行い、データ内の特定の情報や現在の情報が欠けているかもしれません。これにより、モデルが誤ったまたは異常な応答を生成することがあります(「幻覚」とも言われます)。これを軽減するための取り組みが継続中です。第二に、モデルはユーザーの期待に合致するように振る舞ったり応答するとは限りません。…
現代の生成的AIアプリケーションにおけるベクトルデータベースの役割
大規模な生成AIアプリケーションがうまく機能するためには、多くのデータを処理できる良いシステムが必要ですそのような重要なシステムの一つが、ベクトルデータベースですこのデータベースは特別なもので、テキスト、音声、画像、動画などの多様なデータを数値/ベクトル形式で扱いますベクトルデータベースとは何ですか?ベクトルデータベースは、...
「LLMOps対MLOps 違いを理解する」
大規模言語モデルは現在非常に人気があり、それに伴ってより良い管理、組織、計画が必要とされています機械学習がMLOpsにつながるように、LLM(大規模言語モデル)もLLMOps(大規模言語モデルオペレーションズ)につながっていますLLMOpsとMLOpsはデータのクリーンさを確保するという点など多くの類似点がありますが、...
アクセンチュアは、AWS上でジェネレーティブAIサービスを使用して、ナレッジアシストソリューションを作成しました
この投稿はアクセンチュアのイラン・ゲラーとシュウユ・ヤンと共同で執筆されました現在、企業は内部および外部のビジネス活動において情報と知識ベースを使用する際に重大な課題に直面しています絶えず進化する運用、プロセス、ポリシー、およびコンプライアンス要件により、従業員や顧客が最新情報に追いつくことは非常に困難になることがあります
「大きな言語モデルの操作(LLMOps)とは具体的に何ですか?」
大型の言語モデル(LLM)は、多くの産業を革新する可能性を持つ強力な新技術ですしかし、LLMは複雑で管理が難しいという側面もありますLLMOps(大型言語モデルオペレーション)は、LLMの運用管理に焦点を当てた新興分野ですこの新しい分野では、どのような要素が関与しているのでしょうか...
GenAIにとっての重要なデータファブリックとしてのApache Kafka
ジェンAI、チャットボット、およびミッションクリティカルな展開での大規模言語モデルのリアルタイム機械学習インフラとしてのApache Kafka
『今日、企業が実装できる5つのジェネレーティブAIのユースケース』
様々な産業で、エグゼクティブたちはデータリーダーにAIを活用した製品を作り上げるよう求めていますそれにより時間の節約や収益の促進、競争上の優位性の獲得を目指していますまた、OpenAIのようなテックジャイアントも同様です…
「LLMにおけるリトリーバル・オーグメンテッド・ジェネレーションについての深い探求」
「リトリーバル拡張型生成(Retrieval-Augmented Generation)を探求しましょうこのフレームワークは、大規模言語モデルを外部データソースとシームレスに統合し、幻覚やその他の一般的な欠点を排除します」
「AIブーム:小規模ビジネスのための生成AI実践ガイド」
近年、世界は人工知能(AI)の分野で驚くべき急速な発展を目撃していますこれは単なるテクノロジートレンドではなく、技術革命であり、再構築を行っています...
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.