Learn more about Search Results Noti - Page 4

「生成AIはその環境への足跡に値するのか?」

今日、生成AIは非常に注目されていますChatGPTには数億人ものユーザーがおり、同様の機能が多くのデジタル製品に組み込まれていると言われています…

「50以上の最新の最先端人工知能(AI)ツール(2023年11月)」

AIツールは急速に開発が進んでおり、定期的に新しいツールが導入されています。以下にいくつかのAIツールを紹介します。これらは日常のルーティンを強化することができます。 AdCreative.ai AdCreative.aiは、究極の人工知能ソリューションであることから、広告とソーシャルメディアの活動を強化することができます。 Hostinger AIウェブサイトビルダー Hostinger AIウェブサイトビルダーは、直感的なインターフェースと高度なAI機能を組み合わせ、どんな目的にも対応できるウェブサイトの作成をサポートします。 Motion Motionは、会議、タスク、プロジェクトを考慮した毎日のスケジュールを作成するためにAIを使用する賢いツールです。 Otter AI 人工知能を活用したOtter.AIは、共有可能で検索可能でアクセスしやすく安全な会議のメモのリアルタイムトランスクリプションを提供します。 Sanebox Saneboxは、AI駆動のメール最適化ツールです。SaneBoxのA.I.は重要なメールを特定し、残りを自動的に整理して集中力を高めるお手伝いをします。 Notion AI Notion AIは、Notionのワークスペース内で直接執筆、ブレインストーミング、編集、要約を手助けする執筆アシスタントです。 Pecan AI Pecan AIは、予測アナリティクスを自動化して、今日のビジネスの課題である予算縮小、コスト上昇、データサイエンスとAIリソースの限られた資源を解決します。Pecanの低コード予測モデリングプラットフォームは、データに基づいた意思決定を導き、ビジネスチームが目標を達成するのをサポートします。 Aragon Aragonを使用すると、最新のAI技術を活用して、迅速に自分自身の高品質のプロフェッショナルなヘッドショットを作成することができます。写真スタジオの予約やドレッシングアップの手間を省くことができます。…

フリーユーについて紹介します:追加のトレーニングや微調整なしで生成品質を向上させる新しいAIテクニック

確率的拡散モデルは、画像生成モデルの最新のカテゴリであり、特にコンピュータビジョンに関連するタスクにおいて研究の重要な焦点となっています。確率的拡散モデルは、Variational Autoencoder(VAE)、Generative Adversarial Networks(GAN)、およびベクトル量子化アプローチなど、他の画像生成モデルのクラスとは異なる新しい生成パラダイムを導入しています。これらのモデルは、潜在空間をマッピングするために固定マルコフ連鎖を使用し、データセット内の潜在的な構造的複雑さを捉える複雑なマッピングを可能にします。最近では、高い詳細レベルから生成される例の多様性までを含む印象的な生成能力により、画像合成、画像編集、画像から画像への変換、テキストからビデオへの変換など、さまざまなコンピュータビジョンの応用で突破的な進展が生まれています。 確率的拡散モデルは、拡散プロセスとノイズ除去プロセスの2つの主要なコンポーネントで構成されています。拡散プロセスでは、ガウスノイズが段階的に入力データに組み込まれ、徐々に純粋なガウスノイズに変換されます。対照的に、ノイズ除去プロセスは、学習された逆拡散操作のシーケンスを使用して、ノイズのある状態から元の入力データを復元することを目指します。通常、各ノイズ除去ステップごとにノイズの取り除きを予測するために、U-Netが使用されます。既存の研究は、主にダウンストリームの応用で事前学習された拡散U-Netの使用に焦点を当てており、拡散U-Netの内部特性の限られた探求を行っています。 S-Labと南洋理工大学の合同研究は、拡散モデルの従来の応用からの脱却を図り、拡散U-Netのノイズ除去プロセスにおける効果を調査しています。ノイズ除去プロセスのさらなる理解を得るため、研究者たちは、拡散モデルの生成プロセスを観察するためにフーリエドメインへのパラダイムシフトを導入しています。これは比較的未開拓の研究領域です。 上の図は、最上段における進行性のノイズ除去プロセスを示し、次に示される2つの行は、各ステップごとに対応する逆フーリエ変換後の低周波数および高周波数空間ドメイン情報を示しています。この図からは、低周波成分の漸進的な変調が示され、変調は緩やかな率で行われていることがわかります。一方、高周波成分は、ノイズ除去プロセス全体を通じてより顕著なダイナミクスを示しています。これらの結果は、直感的に説明することができます。低周波成分は、画像のグローバルな構造と特性を表しており、グローバルなレイアウトや滑らかな色を含んでいます。これらの成分に大きな変更を加えることは、画像の本質を根本的に変える可能性があるため、ノイズ除去プロセスでは一般的には適していません。一方、高周波成分は、エッジやテクスチャなどの画像の急速な変化を捉え、ノイズに非常に敏感です。ノイズ除去プロセスでは、これらの複雑なディテールを保持しながらノイズを除去する必要があります。 ノイズ除去時の低周波成分と高周波成分に関するこれらの観察を考慮すると、調査は拡散フレームワーク内のU-Netアーキテクチャの具体的な貢献を特定するために広がります。U-Netデコーダの各段階では、スキップコネクションとバックボーンからのスキップフィーチャーが組み合わされます。研究は、U-Netの主要なバックボーンがノイズ除去において重要な役割を果たしている一方、スキップコネクションはデコーダモジュールに高周波フィーチャーを導入し、微細なセマンティック情報の回復に役立っていることを明らかにしました。ただし、この高周波フィーチャーの伝播は、推論フェーズにおいてバックボーンの固有のノイズ除去能力を損なう可能性があり、異常な画像の詳細の生成につながることがあります(図1の最上段に示されています)。 この発見を踏まえ、研究者らは追加の計算コストの要求やトレーニング・ファインチューニングの必要性を伴わずに生成されたサンプルの品質を向上させる「FreeU」と呼ばれる新しいアプローチを提案しています。以下に、そのフレームワークの概要を報告します。 推論フェーズにおいて、U-Netアーキテクチャの主要なバックボーンとスキップ接続からの特徴の寄与のバランスを取るために、2つの専門的な変調因子が導入されます。最初の変数である「バックボーン特徴因子」は、主要なバックボーンの特徴マップを増幅させるために設計され、ノイズ除去プロセスを強化します。しかし、バックボーン特徴のスケーリング因子を含めることは、著しい改善をもたらす一方で、時折、望ましくないテクスチャのオーバースムージングを引き起こすことが観察されます。この懸念に対処するために、2つ目の因子である「スキップ特徴のスケーリング因子」が導入され、テクスチャのオーバースムージングの問題を軽減します。 FreeUフレームワークは、テキストから画像生成やテキストから動画生成などのアプリケーションを含む既存のディフュージョンモデルとシームレスに統合する柔軟性を示します。Stable Diffusion、DreamBooth、ReVersion、ModelScope、およびRerenderなどの基礎モデルを使用し、この手法の包括的な実験評価がベンチマーク比較において行われます。FreeUが推論フェーズで適用されると、これらのモデルは生成された出力の品質の noticeable な向上を示します。以下の図で示される視覚的な表現は、FreeUが生成された画像の細かいディテールと全体的なビジュアルの忠実度を著しく向上させる効果を証明しています。 これは、追加のトレーニングやファインチューニングを必要とせずに生成モデルの出力品質を向上させる新しいAIテクニックであるFreeUの概要でした。興味があり、さらに詳しく知りたい場合は、以下の引用リンクを参照してください。

「LlamaIndex:カスタムデータで簡単にLLMアプリケーションを強化する」

「LlamaIndex」という革新的なツールを使用して、プライベートデータと大規模言語モデル(LLM)の統合を探求しましょうこの包括的なガイドでは、インストール方法、ユースケース、およびLlamaIndexとLangchainの選択について学びましょう

ICAと現実のカクテルパーティの問題

「独立成分分析(ICA)は、1990年代以降の重要な発展¹以降、一般的に使用されるようになったデータ分解および前処理技術ですICAは、盲目的なソース...」

スピーチファイのレビュー:2023年の究極のテキスト音声アプリは?

信頼できるテキスト読み上げアプリをお探しですか?このSpeechifyのレビューをチェックして、移動中の読書の究極のソリューションを発見しましょう

LLama Indexを使用してRAGパイプラインを構築する

イントロダクション 最も人気のある大規模言語モデル(LLM)の応用の一つは、カスタムデータセットに関する質問に回答することです。ChatGPTやBardなどのLLMは、優れたコミュニケーターであり、彼らが訓練されたものに関してはほとんど何でも答えることができます。これはLLMの最大のボトルネックの一つでもあります。彼らはモデルの訓練中に見た質問にしか答えられません。言語モデルは世界の知識に制限があります。例えば、Chatgptは2021年までのデータを利用して訓練されています。また、GPTはあなたの個人ファイルについて学ぶ方法はありません。では、モデルにまだ持っていない知識をどのようにして認識させることができるでしょうか?その答えが「検索補完生成パイプライン(RAG)」です。この記事では、RAG(検索補完生成)パイプラインについて学び、LLamaインデックスを使用してそれを構築する方法について説明します。 学習目標 RAG(検索補完生成)とは何か、またいつ使用するべきかを探求する。 RAGの異なるコンポーネントについて簡単に理解する。 Llamaインデックスについて学び、PDFのためのシンプルなRAGパイプラインを構築する方法を理解する。 埋め込みとベクトルデータベースとは何か、またLlamaインデックスの組み込みモジュールを使用してPDFから知識ベースを構築する方法を学ぶ。 RAGベースのアプリケーションの実世界での使用例を発見する。 この記事はData Science Blogathonの一環として公開されました。 RAGとは何ですか? LLMは、これまでのところ最も効率的かつ強力なNLPモデルです。翻訳、エッセイの執筆、一般的な質問応答の分野でLLMの潜在能力を見てきました。しかし、特定のドメインに特化した質問応答においては、彼らは幻覚に苦しんでいます。また、ドメイン固有のQAアプリでは、クエリごとに関連する文脈を持つドキュメントはわずかです。したがって、ドキュメントの抽出から回答生成、およびその間のすべてのプロセスを統合する統一されたシステムが必要です。このプロセスは「検索補完生成」と呼ばれています。 詳しくはこちらを参照:AIにおける検索補完生成(RAG) では、なぜRAGが実世界の特定のドメインに特化したQAアプリケーションの構築に最も効果的なのかを理解しましょう。 なぜRAGを使用すべきか? LLMが新しいデータを学ぶ方法は3つあります。 トレーニング:兆個のトークンと数十億のパラメータを持つニューラルネットワークの大規模なメッシュが使用されて、大規模言語モデルを作成するために訓練されます。ディープラーニングモデルのパラメータは、特定のモデルに関するすべての情報を保持する係数または重みです。GPT-4のようなモデルを訓練するには、数億ドルがかかります。この方法は誰にでも容易にはできません。このような巨大なモデルを新しいデータで再訓練することは実現不可能です。 ファインチューニング:別のオプションとして、既存のデータに対してモデルをファインチューニングすることが考えられます。ファインチューニングは、トレーニング中に事前に訓練されたモデルを起点として使用することを意味します。事前に訓練されたモデルの知識を利用して、異なるデータセット上で新たなモデルを訓練します。これは非常に強力ですが、時間とお金の面で高コストです。特別な要件がない限り、ファインチューニングは意味がありません。 プロンプティング:プロンプティングは、LLMのコンテキストウィンドウ内に新しい情報を適応させ、提示された情報からクエリに回答させる方法です。これは、訓練やファインチューニングで学んだ知識ほど効果的ではありませんが、ドキュメントの質問応答など多くの実世界のユースケースには十分です。 テキストドキュメントからの回答を促すことは効果的ですが、これらのドキュメントはしばしばLarge Language Models(LLM)のコンテキストウィンドウよりもはるかに大きくなるため、課題を提起します。リトリーバルオーグメンテッドジェネレーション(RAG)パイプラインは、関連するドキュメントセクションの処理、保存、および検索を行うことで、LLMが効率的にクエリに答えることができるようにします。それでは、RAGパイプラインの重要なコンポーネントについて議論しましょう。 RAGコンポーネントとは何ですか?…

「リモートワーク技術の探究:トレンドとイノベーション」

「バーチャルオフィスやコラボレーションツールからワークスペースの未来、サイバーセキュリティ、AI自動化、働き方と生活のバランスの維持まで、リモートワーク技術の進化する風景を探求してみましょうリモートワークの未来を形作るトレンドを発見しましょう」

「大型言語モデルとビジネスの架け橋:LLMops」

「OpenAIのGPT-3やその後継者であるGPT-4などのLLMの基盤は、AIのサブセットであるディープラーニングにありますこれは、3つ以上の層を持つニューラルネットワークを活用していますこれらのモデルは、インターネット上の様々なテキストを網羅する巨大なデータセットで訓練されます訓練を通じて、LLMはシーケンス内の次の単語を予測することを学びます」

「ToolJetに会いましょう:最小限のエンジニアリング作業で内部ツールを構築・展開するためのオープンソースのローコードフレームワーク」

ソフトウェア開発の世界では、組織が過剰なエンジニアリング努力を要求せずに迅速に内部ツールを構築および展開する必要があるという一般的な課題があります。これらのツールは、様々なプロセスを効率化し、組織の効率を改善するために不可欠です。しかし、従来のアプローチでは、こうしたツールを作るためには大量の時間とリソースが必要であり、重要なビジネスニーズへの対応が遅れることがあります。 この問題の既存の解決策には、アプリケーション開発を簡素化することを目指す低コードおよびノーコードプラットフォームがあります。これらのプラットフォームは利便性を提供しますが、カスタマイズ性、柔軟性、統合能力に制約がある場合があります。組織は機能を向上させる必要がある場合や、外部のデータソース、API、SaaSツールとの統合に課題が生じる可能性があります。 それでは、これらの課題に対する解決策を提供するオープンソースの低コードフレームワークであるToolJetをご紹介します。ToolJetのドラッグアンドドロップ型のフロントエンドビルダーは、数分で複雑でレスポンシブなフロントエンドを作成することができ、煩雑なコーディングの必要性を排除します。ToolJetを際立たせるのは、PostgreSQL、MongoDB、Elasticsearchなどのデータベース、OpenAPI仕様とOAuth2サポートを備えたAPIエンドポイント、Stripe、Slack、Google Sheets、Airtable、NotionなどのSaaSツール、S3、GCS、Minioなどのオブジェクトストレージサービスなど、さまざまなデータソースとの強力な統合能力です。 ToolJetに関連する指標はその能力を示しています。40以上の組み込みのレスポンシブコンポーネントを備え、ユーザーインターフェースの設計に対する豊富なライブラリを提供しています。また、ノーコードのデータベースも組み込まれており、マルチページアプリケーションをサポートしており、開発者同士の協力を促進するためのマルチプレイヤー編集も可能です。ToolJetの汎用性は、Docker、Kubernetes、Heroku、AWS EC2、Google Cloud Runなどのさまざまなホスティングオプションとの互換性にも及びます。さらに、精緻なアクセス制御、カスタムJavaScriptおよびPythonコードの実行、シングルサインオン(SSO)プロバイダーのサポートなど、セキュリティとカスタマイズ性を向上させる機能も備えています。 まとめると、ToolJetは最小限のエンジニアリング努力で内部ツールを構築および展開する問題に強力な解決策を提供しています。印象的な機能、広範な統合能力、使いやすさにより、ToolJetは内部ツール開発プロセスを加速させるための貴重な資産となります。ToolJetの機能を活用することで、ビジネスは独自のニーズに対応し、開発時間と複雑さを最小限に抑えながら生産性を向上させることができます。

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us