Learn more about Search Results GitHub - Page 4
- You may be interested
- このAIの論文では、非英語の言語で事前学...
- 「ChatGPTにおける適切なプロンプト設計の...
- サポートベクターマシンとScikit-Learn:...
- 「Spotifyの秘密兵器:AIによる生成プレイ...
- カスタムGPTの構築:教訓とヒント
- 「GPT4のデータなしでコードLLMのインスト...
- 効率的なコーディング:Pandasチェーン操...
- 「LLMsを使用して、ロボットの新しいタス...
- TensorFlowを使用して責任あるAIを構築す...
- 「3DモデリングはAIに基づいています」
- 「FinBERTとSOLID原則を活用して感情スコ...
- AlluxioがAI最適化されたデータプラットフ...
- 清華大学研究者がOpenChatを導入:ミック...
- 「GiskardはHuggingFaceにGiskard Botをリ...
- アルゴリズムは、不妊症の男性の精子を医...
高度なRAGテクニック:イラスト入り概要
この投稿の目標は、利用可能なRAGアルゴリズムとテクニックの概要と説明をすることなので、コードの実装の詳細には立ち入らず、参照のみ行い、それについては放置します
「転移学習を探求しましょう…」(Ten’i gakushū o tankyū shimashou…)
転移学習については、多くの定義があります基本的には、事前学習済みモデルの知識を活用して新しい問題を解決することを指します転移学習には数多くの利点があります...
Pythonの地図を使って貿易流をビジュアライズする – 第1部:双方向貿易流マップ
商品やサービスの交換は、それらの対応する価値と引き換えに私たちの日常生活の重要な一部です同様に、国々はさまざまな種類の貿易関係を築いています
「RustコードのSIMD高速化のための9つのルール(パート2)」
SIMDを使用してRustコードを高速化するための9つの基本ルールを探求してくださいcoresimdについて学び、最適化技術を学びながらパフォーマンスを7倍に向上させましょう
クライテリオンを使用したRustコンパイラの設定のベンチマーキング
この記事では、まず、人気のある基準箱を使用してベンチマークする方法について説明します次に、コンパイラの設定を横断してベンチマークする方法について追加情報を提供します各組み合わせについて…
2024年に探索するべきトップ12の生成 AI モデル
はじめに 近年、人工知能(AI)は非凡な変革を遂げ、創造性の風景を再構築するだけでなく、多様な産業における自動化の新たな基準を設定する先駆的な技術となっています。2024年に入ると、これらの先進的なモデルは画期的な能力、広範な応用、そして世界に紹介する先駆的なイノベーションにより、その地位を固めました。本記事では、今年の主要な生成型AIモデルについて詳しく探求し、彼らの革新的な能力、様々な応用、そして世界にもたらすパイオニア的なイノベーションについて包括的に説明します。 テキスト生成 GPT-4:言語の神童 開発者:OpenAI 能力:GPT-4(Generative Pre-trained Transformer 4)は、文脈の深い理解、微妙な言語生成、およびマルチモーダルな能力(テキストと画像の入力)で知られる最先端の言語モデルです。 応用:コンテンツの作成、チャットボット、コーディング支援など。 イノベーション:GPT-4は、規模、言語理解、多様性の面でこれまでのモデルを上回り、より正確かつ文脈に即した回答を提供します。 この生成型AIモデルにアクセスするには、こちらをクリックしてください。 Mistral:専門家の混合体 開発者:Mistral AI 能力:Mistralは、専門的なサブモデル(エキスパート)に異なるタスクを割り当てることで効率と効果を向上させる、洗練されたAIモデルです。 応用:高度な自然言語処理、パーソナライズされたコンテンツの推薦、金融、医療、テクノロジーなど、様々なドメインでの複雑な問題解決など、幅広い応用があります。 イノベーション:Mistralは、ネットワーク内の最適なエキスパートにタスクを動的に割り当てることによって特徴付けられます。このアプローチにより、専門的で正確かつ文脈に適した回答が可能となり、多面的なAIの課題処理において新たな基準を設定します。 このMistral AIにアクセスするには、こちらをクリックしてください。 Gemini:多面的なミューズ 開発者:Google AI Deepmind…
「UnbodyとAppsmithを使って、10分でGoogle Meet AIアシスタントアプリを作る方法」
「ほぼコードなしで、Google Meetのビデオ録画を処理し、メモを作成し、アクションアイテムをキャプチャするAIのミーティングアシスタントアプリを開発する方法を学びましょう」
「AGIに向かって:LLMと基礎モデルが人生の学びの革命で果たす役割」
過去10年間、特にディープラーニングの成功を受けて、人工汎用知能(AGI)の構築の可能性について議論が続いています最終目標は...
『ODSCのAIウィークリーレビュー:12月15日の週』
「人工知能は、出てきたニュースの数々とともに光の速さで進化していますだから、ODSCで取り上げた話題や見落としてしまった他のストーリーを振り返ってみましょうそうすれば、すべてのAIに関する情報を把握できますよ...」
「オープンソースツールを使用して、プロのように音声をクローンし、リップシンク動画を作る方法」
紹介 AI音声クローンはソーシャルメディアで大流行しています。これにより、創造的な可能性が広がりました。ソーシャルメディアで有名人のミームやAI声の上書きを見たことがあるかもしれません。それがどのように行われているのか疑問に思ったことはありませんか?Eleven Labsなど、多くのプラットフォームがAPIを提供していますが、オープンソースソフトウェアを使用して無料で行うことはできるのでしょうか?短い答えは「YES」です。オープンソースには音声合成を実現するためのTTSモデルとリップシンクツールがあります。したがって、この記事では、音声クローンとリップシンクのためのオープンソースのツールとモデルを探求してみましょう。 学習目標 AI音声クローンとリップシンクのためのオープンソースツールを探求する。 FFmpegとWhisperを使用してビデオを転写する。 Coqui-AIのxTTSモデルを使用して声をクローンする。 Wav2Lipを使用してビデオのリップシンクを行う。 この技術の実世界での使用例を探求する。 この記事はData Science Blogathonの一環として公開されました。 オープンソーススタック 既にご存じのように、私たちはOpenAIのWhisper、FFmpeg、Coqui-aiのxTTSモデル、およびWav2lipを私たちの技術スタックとして使用します。しかし、コードに入る前に、これらのツールについて簡単に説明しましょう。そして、これらのプロジェクトの作者に感謝します。 Whisper: WhisperはOpenAIのASR(自動音声認識)モデルです。これは、多様なオーディオデータと対応するトランスクリプトを用いて、650,000時間以上のトレーニングを受けたエンコーダ-デコーダトランスフォーマーモデルです。そのため、オーディオからの多言語の転写に非常に適しています。 エンコーダは、30秒のオーディオチャンクのログメルスペクトログラムを受け取ります。各エンコーダブロックは、オーディオ信号の異なる部分を理解するためにセルフアテンションを使用します。デコーダは、エンコーダからの隠れ状態情報と学習済みの位置エンコーディングを受け取ります。デコーダはセルフアテンションとクロスアテンションを使用して次のトークンを予測します。プロセスの最後に、認識されたテキストを表すトークンのシーケンスを出力します。Whisperの詳細については、公式リポジトリを参照してください。 Coqui TTS: TTSはCoqui-aiのオープンソースライブラリです。これは複数のテキスト読み上げモデルをホストしています。Bark、Tortoise、xTTSなどのエンドツーエンドモデル、FastSpeechなどのスペクトログラムモデル、Hifi-GAN、MelGANなどのボコーダなどがあります。さらに、テキスト読み上げモデルの推論、調整、トレーニングのための統一されたAPIを提供しています。このプロジェクトでは、xTTSというエンドツーエンドの多言語音声クローニングモデルを使用します。これは英語、日本語、ヒンディー語、中国語などを含む16の言語をサポートしています。TTSについての詳細情報は、公式のTTSリポジトリを参照してください。 Wav2Lip: Wav2Lipは、「A Lip Sync…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.