Learn more about Search Results Flan T5 XL - Page 4
- You may be interested
- 「機械学習支援コンピュータアーキテクチ...
- 「時系列データセットで欠損データを特定...
- 「Amazon SageMaker ClarifyとMLOpsサービ...
- 3Dボディモデルに音声が付きました:Meta ...
- 「AIがキーストロークを聞く:新たなデー...
- コンテンツモデレーションからゼロショッ...
- 「シェアレンティングの危険性:オンライ...
- 「空気圧コンピューティングが重要性を増す」
- 空からのパイ:ドローンスタートアップが...
- Hukkufubu ni storeshien no chihō o shōk...
- このAIの論文では、非英語の言語で事前学...
- 新たな人工知能の研究が、言語モデルの中...
- 「機械学習における特徴エンジニアリング...
- 「再生、リマスター、リミックス:伝説的...
- Hugging Face Optimumを使用して、Transfo...
AWS Inferentia2を使用してHugging Face Transformersを高速化する
過去5年間、Transformerモデル[1]は、自然言語処理(NLP)、コンピュータビジョン(CV)、音声など、多くの機械学習(ML)タスクのデファクトスタンダードとなりました。今日、多くのデータサイエンティストやMLエンジニアは、BERT[2]、RoBERTa[3]、Vision Transformer[4]などの人気のあるTransformerアーキテクチャ、またはHugging Faceハブで利用可能な130,000以上の事前学習済みモデルを使用して、最先端の精度で複雑なビジネス問題を解決するために頼っています。 しかし、その優れた性能にもかかわらず、Transformerは本番環境での展開には困難を伴うことがあります。モデル展開に通常関連するインフラストラクチャの設定に加えて、我々はInference Endpointsサービスで大部分の問題を解決しましたが、Transformerは通常、数ギガバイトを超える大きなモデルです。GPT-J-6B、Flan-T5、Opt-30Bなどの大規模言語モデル(LLM)は数十ギガバイトであり、BLOOMなどの巨大なモデルは350ギガバイトもあります。 これらのモデルを単一のアクセラレータに適合させることは非常に困難ですし、会話型アプリケーションや検索のようなアプリケーションが必要とする高スループットと低推論レイテンシを実現することはさらに難しいです。MLの専門家たちは、大規模モデルをスライスし、アクセラレータクラスタに分散させ、レイテンシを最適化するために複雑な手法を設計してきました。残念ながら、この作業は非常に困難で時間がかかり、多くのMLプラクティショナーには到底手の届かないものです。 Hugging Faceでは、MLの民主化を進めるとともに、すべての開発者と組織が最先端のモデルを利用できるようにすることを目指しています。そのため、今回はAmazon Web Servicesと提携し、Hugging Face TransformersをAWS Inferentia 2に最適化することに興奮しています!これは、前例のないスループット、レイテンシ、パフォーマンス、スケーラビリティを提供する新しい特別な推論アクセラレータです。 AWS Inferentia2の紹介 AWS Inferentia2は、2019年に発売されたInferentia1の次世代です。Inferentia1のパワーにより、Amazon EC2 Inf1インスタンスは、NVIDIA A10G GPUをベースとしたG5インスタンスと比較して、スループットが25%向上し、コストが70%削減されました。そして、Inferentia2により、AWSは再び限界を em>押し広げています。 新しいInferentia2チップは、Inferentiaと比較してスループットが4倍向上し、レイテンシが10倍低下します。同様に、新しいAmazon…
Amazon SageMakerのHugging Face LLM推論コンテナをご紹介します
これは、オープンソースのLLM(Large Language Model)であるBLOOMをAmazon SageMakerに展開し、新しいHugging Face LLM Inference Containerを使用して推論を行う方法の例です。Open Assistantデータセットで訓練されたオープンソースのチャットLLMである12B Pythia Open Assistant Modelを展開します。 この例では以下の内容をカバーしています: 開発環境のセットアップ 新しいHugging Face LLM DLCの取得 Open Assistant 12BのAmazon SageMakerへの展開 モデルを使用して推論およびチャットを行う…
チャートの推論に基づくモデルの基盤
グーグルリサーチのリサーチソフトウェアエンジニア、ジュリアン・アイゼンシュロスによる投稿 ビジュアル言語は、情報を伝えるためにテキスト以外の絵文字を使用するコミュニケーション形式です。アイコノグラフィ、情報グラフィック、表、プロット、チャートなどの形でデジタルライフで普及しており、道路標識、コミックブック、食品ラベルなどの現実世界にも広がっています。このようなメディアをコンピュータがより理解できるようにすることは、科学的コミュニケーションと発見、アクセシビリティ、データの透過性に役立ちます。 ImageNetの登場以来、学習ベースのソリューションを使用してコンピュータビジョンモデルは大きな進歩を遂げてきましたが、焦点は自然画像にあり、分類、ビジュアルクエスチョンアンサリング(VQA)、キャプション、検出、セグメンテーションなどのさまざまなタスクが定義され、研究され、いくつかの場合には人間の性能に達成されています。しかし、ビジュアル言語は同じレベルの注目を集めていません。これは、この分野における大規模なトレーニングセットの不足のためかもしれません。しかし、PlotQA、InfographicsVQA、ChartQAなどの視覚言語イメージにおける質問応答システムの評価を目的とした新しい学術データセットが、ここ数年で作成されています。 ChartQAからの例。質問に答えるには、情報を読み取り、合計と差を計算する必要があります。 これらのタスクに対して構築された既存のモデルは、光学的文字認識(OCR)情報とその座標を大規模なパイプラインに統合することに頼っていましたが、プロセスはエラーが発生しやすく、遅く、一般化が悪いです。既存の畳み込みニューラルネットワーク(CNN)またはトランスフォーマーに基づくエンドツーエンドのコンピュータビジョンモデルは、自然画像で事前にトレーニングされたモデルを簡単にビジュアル言語に適応させることができなかったため、これらの方法が広く使用されていました。しかし、既存のモデルは、棒グラフの相対高さや円グラフのスライスの角度を読み取り、軸のスケールを理解し、色、サイズ、テクスチャでピクトグラムを伝説値に正しくマッピングし、抽出された数字で数値演算を実行するなど、チャートの質問に対する課題には準備ができていません。 これらの課題に対応するために、「MatCha:数学推論とチャートディレンダリングを活用したビジュアル言語の事前トレーニングの強化」という提案を行います。 MatChaは数学とチャートを表す言葉であり、2つの補完的なタスクでトレーニングされたピクセルからテキストへの基礎モデル(複数のアプリケーションでファインチューニングできる組み込み帰納バイアスを備えた事前トレーニングモデル)です。1つはチャートディレンダリングであり、プロットまたはチャートが与えられた場合、画像からテキストモデルはその基礎となるデータテーブルまたはレンダリングに使用されるコードを生成する必要があります。数学推論の事前トレーニングでは、テキストベースの数値推論データセットを選択し、入力を画像にレンダリングし、画像からテキストモデルが回答をデコードする必要があります。また、「DePlot:プロットからテーブルへの翻訳によるワンショットビジュアル言語推論」という、テーブルへの翻訳を介したチャートのワンショット推論にMatChaの上に構築されたモデルを提案します。これらの方法により、ChartQAの以前の最高記録を20%以上超え、パラメータが1000倍多い最高の要約システムに達成します。両方の論文はACL2023で発表されます。 チャートディレンダリング プロットやチャートは、基礎となるデータテーブルとコードによって通常生成されます。コードは、図の全体的なレイアウト(タイプ、方向、色/形状スキームなど)を定義し、基礎となるデータテーブルは実際の数字とそのグループ化を確立します。データとコードの両方がコンパイラ/レンダリングエンジンに送信され、最終的な画像が作成されます。チャートを理解するには、イメージ内の視覚パターンを発見し、効果的に解析してグループ化し、主要な情報を抽出する必要があります。プロットレンダリングプロセスを逆転するには、すべてのこのような機能が必要であり、したがって理想的な事前トレーニングタスクとして機能することができます。 ランダムなプロットオプションを使用して、Airbus A380 Wikipediaページの表から作成されたチャートです。MatChaの事前トレーニングタスクは、イメージからソーステーブルまたはソースコードを回復することです。 チャート、その基礎となるデータテーブル、およびそのレンダリングコードを同時に取得することは、実践的には困難です。事前トレーニングデータを十分に収集するために、[chart、code]および[chart、table]のペアを独立して蓄積します。[chart、code]の場合、適切なライセンスを持つすべてのGitHub IPythonノートブックをクロールし、図を含むブロックを抽出します。図とそれに直前にあるコードブロックは、[chart、code]ペアとして保存されます。[chart、table]のペアについては、2つのソースを調査しました。最初のソースは、合成データで、TaPasコードベースからWebクロールされたWikipediaテーブルを手動でコードに変換します。列のタイプに応じて、いくつかのプロットオプションをサンプリングして組み合わせます。さらに、事前トレーニングコーパスを多様化するために、PlotQAで生成された[chart、table]ペアも追加します。2番目のソースはWebクロールされた[chart、table]ペアです。Statista、Pew、Our World in Data、OECDの4つのWebサイトから合計約20,000ペアを含むChartQAトレーニングセットでクロールされた[chart、table]ペアを直接使用します。 数学的推論 MatChaに数値推論知識を組み込むために、テキスト数学データセットから数学的推論スキルを学習します。事前トレーニングには、MATHとDROPの2つの既存のテキスト数学推論データセットを使用します。MATHは合成的に作成され、各モジュール(タイプ)の質問ごとに200万のトレーニング例を含んでいます。DROPは読解型のQAデータセットで、入力はパラグラフのコンテキストと質問です。 DROPでの質問を解決するには、モデルがパラグラフを読み、関連する数字を抽出し、数値計算を実行する必要があります。私たちは、両方のデータセットが補完的であることを発見しました。MATHには、異なるカテゴリーにわたる多数の質問が含まれており、モデルに明示的に注入する必要がある数学的操作を特定するのに役立ちます。DROPの読解形式は、モデルが情報抽出と推論を同時に実行する典型的なQA形式に似ています。実際には、両方のデータセットの入力を画像にレンダリングします。モデルは答えをデコードするように訓練されます。 MATHとDROPからの例をMatChaの事前トレーニング目的に取り込むことにより、MatChaの数学的推論スキルを向上させます。入力テキストを画像としてレンダリングします。 エンドツーエンドの結果 Webサイト理解に特化した画像からテキストへの変換トランスフォーマーであるPix2Structモデルバックボーンを使用し、上記の2つのタスクで事前トレーニングを行います。MatChaの強みを示すために、表の基礎にアクセスできない質問応答や要約のためのチャートやプロットを含むいくつかの視覚言語タスクで微調整します。MatChaは、以前のモデルの性能を大幅に上回り、基礎となるテーブルにアクセスできると仮定する以前の最先端も上回ります。 以下の図では、チャートと作業するための標準的なアプローチであったOCRパイプラインから情報を取り込んだ2つのベースラインモデルを最初に評価します。最初のものはT5に基づき、2番目のものはVisionTaPasに基づきます。また、PaLI-17BとPix2Structのモデル結果を報告します。PaLI-17Bは、多様なタスクでトレーニングされた大型(他のモデルの約1000倍)のイメージプラステキスト・トゥ・テキスト・トランスフォーマーですが、テキストやその他の視覚言語の読み取り能力に限界があります。最後に、Pix2StructとMatChaのモデル結果を報告します。…
Amazon Lex、Langchain、およびSageMaker Jumpstartを使用した会話型エクスペリエンスにおける生成AIの探求:イントロダクション
現代の快速な世界では、顧客はビジネスから迅速かつ効率的なサービスを期待していますただし、問い合わせの量が対応する人的リソースを超える場合、優れた顧客サービスを提供することは著しく困難になることがありますしかし、生成的人工知能(生成的 AI)の進歩により、ビジネスはこの課題に対処しながら、個人化された効率的な顧客サービスを提供することができます
Amazon SageMakerでTritonを使用してMLモデルをホストする:ONNXモデル
ONNX(Open Neural Network Exchange)は、多くのプロバイダーによって広くサポートされている深層学習モデルを表現するためのオープンソースの標準ですONNXは、機械学習(ML)モデルを実行するために必要なメモリと計算を削減するための最適化および量子化モデルのツールを提供しますONNXの最大の利点の1つは、標準化された形式を提供することです[…]
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.