Learn more about Search Results Descript - Page 4
- You may be interested
- 「ヒートラインプロットの作成方法」
- AI 幻覚の危険性:課題と影響の解明
- 「アリババは、量子コンピューティングよ...
- 機械学習の解説:アルゴリズム、モデル、...
- 鑑識分類器をだます:敵対的な顔生成にお...
- バイデン政権、中国へのA.I.チップの販売...
- Google Quantum AIの研究者が、拡張性のあ...
- このAI研究は、車両の後続振る舞いモデリ...
- ロボットのライバルを撃退した後、オスの...
- このAI論文は、デュアル1-Dヒートマップを...
- 「Amazon SageMaker JumpStartを使用して...
- 「AIを活用してより良い世界を実現する」
- マイクロソフトの研究者が「SpaceEvo」を...
- 「Cheat Sheetつきで始めるグラフデータベ...
- UCSDとMicrosoftの研究者がColDecoを導入...
ネットワークグラフを視覚化するための最高の新しいPythonパッケージ
この記事では、私が偶然出会ったPythonパッケージを紹介します私の謙虚な意見ですが、これは今まで見た中で最高のネットワークグラフの視覚化ツールですデータに詳しい読者の方々にとって…
「Amazon Bedrock と Amazon Location Service を使用したジオスペーシャル生成AI」
今日、ジオスペーシャルのワークフローは、通常、データの読み込み、変換、そしてマップ、テキスト、またはチャートなどの視覚的インサイトの生成から構成されます生成AIは、これらのタスクを自律エージェントを介して自動化することができますこの投稿では、Amazon Bedrockの基本モデルを使用して、ジオスペーシャルタスクを完了するためにエージェントにパワーを与える方法について説明しますこれらのエージェントはさまざまなタスクを実行することができます[...]
音声合成:進化、倫理、そして法律
ロマン・ガーリン、シニアバイスプレジデント @イノベーション、スポートレーダー この記事では、音声合成の進化を辿り、それが及ぼす法的な影響について探求します
「オートジェンへの参入:マルチエージェントフレームワークの基礎を探索する」
イントロダクション 「自動生成に飛び込む:マルチエージェントフレームワークの基礎を探る」というテーマでソフトウェア開発の未来へのスリリングな旅に出ましょう。OpenAIのChatGPTに続く専門領域であるLLMエージェントは、AIエージェントの開発を革新する前例のない急激な急増を経験しています。単調なタスクの自動化から、動的な意思決定の課題への取り組みまで、LLMエージェントはかつて不可能と思われていた領域の限界を押し広げています。LLMエージェントは、私たちが想像することができる未来の世界において、コンピュータが現実とシームレスに融合し、AIエージェントの重要性がますます高まる世界を思い浮かべてください。言葉やジェスチャーを使ってエージェントに指示を出し、彼らが優れた推論力と行動能力でタスクを実行する様子を想像してください。しかし、私たちはAIエージェントの革命の夜明けを迎えており、ますます複雑なタスクに取り組むエージェントを力づけるための新しいインフラストラクチャ、ツール、フレームワークが生まれる様子を目の当たりにしています。マルチエージェントチャットシステムのための最先端のフレームワークであるAutogenが、今回の探求の中心になります。 本記事では、革命の初期段階にあるAIエージェントの複雑さを解きほぐし、Autogenの能力を探求しながら、これらのインテリジェントな実体をどのように活かすかを発見していきます。 学習目標 LLMエージェントとは何かを理解する Autogenとは何かを理解し、Autogenを使用してエージェントを構築する基礎を探る AutogenとOpenAI APIを使用してエージェントを構築する LLMエージェントの実世界での使用例を探索する この記事はData Science Blogathonの一環として公開されました。 LLMエージェントとは何か 通常の言語モデルは、翻訳や質問応答など、多くのことに長けています。しかし、その知識と能力には限界があります。それは、家を建てるための道具を持たない職人のようなものです。しかし、LLM(俳句言語モデル)は、必要なツールさえ与えられれば、推論や行動が可能であることが観察されています。ほとんどのLLMは世界の知識が限られていますが、プロンプティングを介してカスタムソースからの情報を補完することができます。 この目的を達成するには、2つの方法があります。検索付き生成(Retrieval Augmented Generation)とLLMエージェントです。RAGでは、モデルに情報をカスタムのハードコードパイプラインを通じて提供します。しかし、エージェントでは、LLMは推論に基づいて手元のツールを使います。たとえば、GPT-4にSerperツールを組み合わせれば、インターネットを検索して回答することができます。また、Yahoo Financeツールにアクセスできる場合は、株式のパフォーマンスを取得して分析することもできます。つまり、LLM、ツール、推論および行動のためのフレームワークの組み合わせがAIエージェントの特徴です。 LLMエージェントの構築には、プラットフォームやツールが急速に増えてきています。Autogenもそのようなツールの1つです。そのため、Autogenが何であり、それを使用してLLMエージェントを作成する方法を理解しましょう。 Autogenとは何か Autogenは、マイクロソフトのオープンソースツールで、堅牢なマルチエージェントアプリケーションを構築するためのツールです。複数のエージェント間のコミュニケーションを重視して、ゼロから設計されています。このツールを使用して、複数のエージェントが提供された問題の解決策を見つけるためにお互いに会話するLLMアプリケーションを作成することができます。エージェントは高度にカスタマイズ可能であり、特定のタスクを実行するために彼らをガイドすることができます。また、Langchainツールエコシステムとも非常に統合されており、既存のLangchainツールを活用してエージェントを補完することができます。 タスクを達成するために、Autogenはさまざまなタイプのエージェントを提供しています。例えば、 アシスタントエージェント:コーディング、レビューなどのタスクを達成する責任を持つエージェントです。 ユーザープロキシエージェント:その名前の通り、これらのエージェントはユーザーの代わりに行動します。人間がエージェントループに参加し、会話をガイドするためのものです。…
「NVIDIAスタジオ」で美しく写実的なフードレンダリングを作り出す3Dアーティストが今週登場しました
エディターの注釈:この投稿は、私たちの週間In the NVIDIA Studioシリーズの一部であり、注目のアーティストを称え、クリエイティブなヒントやトリックを提供し、NVIDIA Studioテクノロジーがクリエイティブなワークフローの向上にどのように役立つかをデモンストレーションします。 感謝の季節です:人々や小さな瞬間に感謝する時間です。それらが私たちの人生を特別なものにするのです。 今週の注目のCG Realism YouTuberであるRavissen Carpenenさんは、食卓に見事なほどリアルな3Dフードの映像を提供しています。 彼の美味しそうなタイムラプス映像は、彼のYouTubeチャンネルで視聴できます。ブライトな音楽とスタイリッシュさを添えて楽しんでください。 Carpenenさんは、食べ物テーマのStudio Standoutビデオコンテストへの数多くの貢献者の一人であり、Roger Roqueさん(@rogerroqueid)、Nicole Morenaさん(@nicky.blender)、Heloise Cartさん(@isoheell)および Kris Theroinさん(@kristheorin)と一緒に作品を提供しました。 最新のアップデートでは、OBS Studioを使用するライブストリーマーは、HDR10キャプチャサポート、WHIPおよびWebRTC出力などの機能を備えた最新バージョンをダウンロードできます。詳細はこちらをご覧ください。 All About That Baste…
「Elasticsearchのマスター:パワフルな検索と正確性のための初心者ガイドーPart 1」
· 前回から始める、Elasticsearch ⊛ サンプルデータセット ⊛ ElasticSearchクエリの理解 ⊛ 応答の理解 ⊛ 基本的な検索クエリ · 語彙的検索 · 問題...
データ分析の仕事のトレンド:パート2
「データ分析の求人市場で需要のあるこれらのスキルセットをチェックしてください」
テキストから画像への革命:SegmindのSD-1Bモデルが最速のゲームで登場
紹介 Segmind AIは、画期的なオープンソースのテキストから画像への生成モデルであるSSD-1B(Segmind Stable Diffusion 1B)を誇りに思って発表しました。この高速モデルは、前例のない速度、コンパクトなデザイン、高品質な視覚出力を実現しています。人工知能は、自然言語処理とコンピュータビジョンの分野で急速な進歩を示し、境界を再定義する革新を示しています。SSD 1Bモデルは、その主な特徴によりコンピュータビジョンへの扉を開きます。この包括的な記事では、モデルの特徴、使用例、アーキテクチャ、トレーニング情報などについて詳しく説明します。 学習目標 SSD-1Bのアーキテクチャの概要を探索し、専門モデルからの知識蒸留の活用方法を理解する。 SegmindプラットフォームでSSD-1Bモデルを活用して、高速な推論とコード推論を試して実践的な経験を得る。 後続の使用例について学び、SSD-1Bモデルが特定のタスクに使用できる方法を理解する。 特に絶対的な写真リアリズムの達成と特定のシナリオでのテキストの明瞭性を維持するためのSSD-1Bの限界を認識する。 この記事は、Data Science Blogathonの一環として公開されました。 モデルの説明 生成的な人工知能を使用する際の主な課題は、サイズと速度の問題です。テキストベースの言語モデルを扱うことは、モデル全体の重みを読み込む問題と推論時間の問題になりますが、安定な拡散を使った画像の場合はさらに困難になります。SSD-1Bは、高品質なテキストから画像への生成能力を維持しながら、SDXLの50%小さい蒸留版であり、60%の高速化が実現されています。GritとMidjourneyのスクレープデータを含むさまざまなデータセットでトレーニングされており、単語に基づいた視覚的な内容の作成に優れています。これは、専門モデル(SDXL、ZavyChromaXL、JuggernautXL)からの知識の戦略的な蒸留と豊富なデータセットでのトレーニングによって達成されました。この蒸留プロセスにより、SSD-1Bは様々なコマンドを処理する能力を備えています。 Segmind SD-1Bの主な特徴 テキストから画像の生成: テキストのプロンプトから画像を生成することに優れ、創造的なアプリケーションが可能です。 高速化のために蒸留: 効率化のために設計され、リアルタイムアプリケーションでの実用的な使用を60%高速化します。 多様なトレーニングデータ:…
「AutoGenを使った戦略的AIチームビルディングが簡単になりました」
イントロダクション デジタルフロンティアが無限の領域に達し、AutoGenは変革的なパラダイムの設計者として現れます。異なる領域でスキルを持つ個々のパーソナルAIチームがシームレスに協力し、円滑にコミュニケーションし、複雑なタスクに取り組み続けることを想像してみてください。それがAutoGenの本質であり、パーソナルAIチームの構築を可能にする先駆的なマルチエージェント対話フレームワークです。本記事では、AutoGenの魔法を解き明かし、独自のデジタルドリームチームを組み立て、非凡な成果を達成する方法を探ります。人間と機械の境界が薄れ、協力が無限になる未来へようこそ。 学習目標 詳細に入る前に、この記事の主な学習目標を概説しましょう。 マルチエージェント対話フレームワークとしてのAutoGenについて包括的な理解を得る。 エージェントがマルチエージェント対話フレームワークで自律的にコミュニケーションし、協力する方法を学ぶ。 AutoGenの動作におけるconfig_listの重要な役割について学ぶ。APIキーの保護とエージェントの効率的なパフォーマンスのための設定の管理に関するベストプラクティスを理解する。 AutoGenがサポートする完全自律から人間が関与する対話までのさまざまな対話スタイルを探索する。AutoGenがサポートする静的および動的な対話パターンについて学ぶ。 検証データ、評価関数、最適化メトリクスに基づいてLLMを調整するためにAutoGenを利用する方法を発見する。 コラボレーションコンテンツ作成チームや文化的な文脈での言語翻訳などの例を探索し、AutoGenがさまざまなシナリオでどのように適用されるかを理解する。 この記事はData Science Blogathonの一部として公開されました。 AutoGenとは何ですか? AutoGenは、基盤モデルの使用のための高度な抽象化として機能する統合マルチエージェント対話フレームワークです。それは、能力のあるカスタマイズ可能なエージェントをLLM、ツール、および人間の参加者が自動化チャット経由で統合することにより、エージェントが自律的にコミュニケーションし、協力して作業することを可能にします。基本的には、複雑なタスクを効率的に進め、ワークフローを自動化することができます。 なぜAutoGenが重要ですか? AutoGenは、効率的かつ柔軟なマルチエージェント通信の需要に応えます。その重要性は次の点にあります: 複雑なLLMワークフローのオーケストレーション、自動化、最適化を簡素化する。 LLMモデルのパフォーマンスを最大化すると同時に、制限を克服する。 次世代のLLMアプリケーションを少ない努力でマルチエージェント対話に基づいて開発することを可能にする。 開発環境のセットアップ 仮想環境の作成 仮想環境はプロジェクト固有の依存関係を分離し、システム全体のパッケージとの競合を避けるための良い習慣です。Python環境を設定する方法は次のとおりです: オプション1:Venv…
LLM SaaSのためのFastAPIテンプレート パート1 — Authとファイルのアップロード
最近、FastAPIはPythonバックエンド開発者コミュニティで注目を集めていますそのシンプルさ、非同期性、ネイティブのSwagger UIのおかげですこれらの人気のあるLLMオープンソースの中で...
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.