Learn more about Search Results Clem - Page 4

Hugging FaceとAMDは、CPUおよびGPUプラットフォーム向けの最先端モデルの高速化に関するパートナーシップを結んでいます

言語モデル、大規模な言語モデル、または基盤モデル、トランスフォーマーは、事前学習、微調整、および推論において大量の計算を必要とします。Hugging Faceは、開発者や組織が最大のパフォーマンスを得るために、ハードウェア企業と協力して、各チップのアクセラレーション機能を活用してきました。 本日、私たちはAMDが正式に私たちのハードウェアパートナープログラムに参加したことをお知らせいたします。私たちのCEOであるClement Delangueが、サンフランシスコで行われたAMDのデータセンターおよびAIテクノロジープレミアで基調講演を行い、このエキサイティングな新しい協力関係を発表しました。 AMDとHugging Faceは、AMDのCPUおよびGPU上で最先端のトランスフォーマーパフォーマンスを提供するために協力しています。このパートナーシップは、Hugging Faceコミュニティ全体にとって非常に良いニュースであり、近々、最新のAMDプラットフォームをトレーニングおよび推論に活用することができるようになります。 長年にわたり、ディープラーニングハードウェアの選択肢は限られており、価格と供給は懸念事項となっています。この新しいパートナーシップは、競争に対抗するだけでなく、市場の動向を緩和するのに役立ちます。さらに、新しいコストパフォーマンスの基準を設定することも期待されます。 サポートされるハードウェアプラットフォーム GPU側では、AMDとHugging Faceはまず、エンタープライズグレードのInstinct MI2xxおよびMI3xxファミリー、次に、カスタマーグレードのRadeon Navi3xファミリーで協力します。AMDの最近のテストでは、MI250が直接競合他社よりもBERT-Largeを1.2倍、GPT2-Largeを1.4倍高速にトレーニングすることを報告しています。 CPU側では、両社はクライアントRyzenおよびサーバーEPYC CPUの推論の最適化に取り組みます。いくつかの以前の投稿で議論したように、CPUはトランスフォーマーの推論において優れたオプションになり得ます。特に、量子化などのモデル圧縮技術と組み合わせた場合です。 最後に、この協力関係には、低い電力要件で驚異的なパフォーマンスを発揮するAlveo V70 AIアクセラレータも含まれます。 サポートされるモデルアーキテクチャとフレームワーク 私たちは、自然言語処理、コンピュータビジョン、音声などの最先端のトランスフォーマーアーキテクチャ(BERT、DistilBERT、ROBERTA、Vision Transformer、CLIP、Wav2Vec2など)をサポートする予定です。もちろん、生成型AIモデル(GPT2、GPT-NeoX、T5、OPT、LLaMAなど)、私たち自身のBLOOMおよびStarCoderモデルも利用可能です。最後に、ResNetやResNextのようなより伝統的なコンピュータビジョンモデル、そして深層学習の推薦モデルにも初めて対応します。 これらのモデルをPyTorch、TensorFlow、およびONNX Runtime向けに上記のプラットフォームでテストおよび検証するために最善を尽くします。すべてのモデルが、すべてのフレームワークまたはすべてのハードウェアプラットフォームでトレーニングおよび推論に利用可能であるわけではないことを覚えておいてください。 今後の展望…

自分のハードウェアでのコード理解

現在の大規模言語モデル(LLM)が実行できるさまざまなタスクの中で、ソースコードの理解は、ソフトウェア開発者やデータエンジニアとしてソースコードで作業している場合に特に興味深いものかもしれません

紛争のトレンドとパターンの探索:マニプールのACLEDデータ分析

はじめに データ分析と可視化は、複雑なデータセットを理解し、洞察を効果的に伝えるための強力なツールです。この現実世界の紛争データを深く掘り下げる没入型探索では、紛争の厳しい現実と複雑さに深く踏み込みます。焦点は、長期にわたる暴力と不安定状態によって悲惨な状況に陥ったインド北東部のマニプール州にあります。私たちは、武装紛争ロケーション&イベントデータプロジェクト(ACLED)データセット[1]を使用し、紛争の多面的な性質を明らかにするための詳細なデータ分析の旅に出ます。 学習目標 ACLEDデータセットのデータ分析技術に熟達する。 効果的なデータ可視化のスキルを開発する。 脆弱な人口に対する暴力の影響を理解する。 紛争の時間的および空間的な側面に関する洞察を得る。 人道的ニーズに対処するための根拠に基づくアプローチを支援する。 この記事は、データサイエンスブログマラソンの一環として公開されました。 利害の衝突 このブログで提示された分析と解釈に責任を持つ特定の組織や団体はありません。目的は、紛争分析におけるデータサイエンスの潜在力を紹介することです。さらに、これらの調査結果には個人的な利益や偏見が含まれておらず、紛争のダイナミクスを客観的に理解するアプローチが確保されています。データ駆動型の方法を促進し、紛争分析に関する広範な議論に情報を提供するために、積極的に利用することを推奨します。 実装 なぜACLEDデータセットを使用するのか? ACLEDデータセットを活用することで、データサイエンス技術の力を活用することができます。これにより、マニプール州の状況を理解するだけでなく、暴力に関連する人道的側面にも光を当てることができます。ACLEDコードブックは、このデータセット[2]で使用されるコーディングスキームと変数に関する詳細な情報を提供する包括的な参考資料です。 ACLEDの重要性は、共感的なデータ分析にあります。これにより、マニプール州の暴力に関する理解が深まり、人道的ニーズが明らかにされ、暴力の解決と軽減に貢献します。これにより、影響を受けるコミュニティに平和で包摂的な未来が促進されます。 このデータ駆動型の分析により、貴重な洞察力を得るだけでなく、マニプール州の暴力の人的コストにも光が当てられます。ACLEDデータを精査することで、市民人口、強制的移動、必要なサービスへのアクセスなど、地域で直面する人道的現実の包括的な描写が可能になります。 紛争のイベント まず、ACLEDデータセットを使用して、マニプール州の紛争のイベントを調査します。以下のコードスニペットは、インドのACLEDデータセットを読み込み、マニプール州のデータをフィルタリングして、形状が(行数、列数)のフィルタリングされたデータセットを生成します。フィルタリングされたデータの形状を出力します。 import pandas as pd # ACLEDデータをダウンロードして国別のcsvをインポートする…

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us