Learn more about Search Results Claude - Page 4

「Perplexity(パープレキシティ)が2つの新たなオンラインLLMモデルを発表:『pplx-7b-online』と『pplx-70b-online』」

パープレキシティ(Perplexity)は、革新的なAIスタートアップとして、情報検索システムを変革する解決策を発表しました。このローンチでは、革新的なLLM(Large Language Models)の2つ、pplx-7b-onlineとpplx-70b-onlineが公にアクセス可能なAPIを介して導入されました。これらのモデルは、Claude 2などの従来のオフラインLLMとは異なり、ライブインターネットデータを活用してリアルタイムで正確なクエリの応答を実現するため、最新のスポーツスコアなどの最新情報といった即座の情報に対する課題を克服しています。 パープレキシティのpplxオンラインモデルがAIの領域で差別化される要因は、APIを介して提供されるユニークなオファーにあります。Google Bard、ChatGPT、BingChatなどの既存のLLMは、オンラインブラウジングで進歩を遂げていますが、APIを介してこの機能を拡張しているものはありません。パープレキシティは、社内の検索インフラストラクチャにこの機能を帰属し、信頼性のある情報源を優先し、高度なランキングメカニズムを活用してリアルタイムに関連性の高い信頼性のある情報を提示するための幅広い優れたウェブサイトのリポジトリをカバーしています。これらのリアルタイムの「スニペット」はLLMに統合され、最新の情報を容易に反映しています。両モデルは、mistral-7bベースモデルとllama2-70bベースモデルに基づいて構築されています。 特筆すべきことに、Perplexity AIは、最先端のテクノロジーと統合するだけでなく、最適なパフォーマンスを引き出すためにこれらのモデルを細かく調整しています。この注意深いプロセスでは、社内データ請負業者によってキュレートされた多様なトップクラスのトレーニングセットを活用しています。この継続的な改善作業により、モデルは助けになり、事実性と新鮮さの面で優れた性能を発揮します。 これらのモデルの効果を検証するために、Perplexity AIは、助けになり、事実性、最新の情報性などの要素を評価する多様なプロンプトを使用して包括的な評価を実施しました。これらの評価では、オープンAIのgpt-3.5やメタAIのllama2-70bなどの主要なモデルとの比較を行い、全体的なパフォーマンスと特定の基準に焦点を当てました。 これらの評価の結果は印象的です。pplx-7b-onlineおよびpplx-70b-onlineは、鮮度、事実性、総合的な好みの面で、対応する他のモデルを常に上回っています。例えば、鮮度の基準では、pplx-7bとpplx-70bは、gpt-3.5とllama2-70bを上回る1100.6と1099.6の推定Eloスコアを獲得しました。 即座に、開発者はPerplexityのAPIにアクセスして、これらのモデルのユニークな機能を活用したアプリケーションを作成することができます。価格体系は利用料に基づいており、早期テスター向けの特別プランも用意されています。 このパイオニア的なリリースにより、PerplexityはAIによる情報検索システムに革新的な変革をもたらしています。pplx-7b-onlineとpplx-70b-onlineモデルがアクセス可能なAPIを介して導入され、既存のオフラインLLMの制約を解消し、正確かつ最新の事実性のある情報の提供で優れたパフォーマンスを発揮しています。 pplx-apiでの開始はこちら。 Perplexity Labsでオンラインモデルを無料で試す。 この記事は、PerplexityがオンラインLLMモデル2つを発表:「pplx-7b-online」と「pplx-70b-online」記事から取得されました。MarkTechPostから転載されました。

「データ駆動方程式発見について」という文章です

「実験を通じて検証された分析的な表現を用いて自然を説明することは、特に物理学の基礎的な引力の法則から始まる科学の成功の象徴です...」

開発者の生産性向上:DeloitteのAmazon SageMaker Canvasを用いたノーコード/ローコード機械学習の活用方法

今日のデータ駆動型の世界では、機械学習(ML)モデルを素早く構築し展開する能力がますます重要になっていますしかし、MLモデルの構築には時間と労力、特殊な専門知識が必要ですデータの収集やクリーニングから特徴エンジニアリング、モデルの構築、調整、展開まで、MLプロジェクトは開発者にとって数か月かかることがよくありますそして経験豊富なデータ[...]

「品質と責任について大規模な言語モデルを評価する」

生成AIに関連するリスクは広く公表されています有毒性、偏見、逸出した個人情報、幻覚は組織の評判に悪影響を与え、顧客の信頼を損ないます研究によると、バイアスや有毒性のリスクは、事前訓練された基盤モデル(FM)から特定のタスクに向けた生成AIサービスに移行するだけでなく、FMを特定のタスクに調整することによっても発生します

「Amazon SageMakerを使用して数百のモデルにスケールされたファウンデーションモデルの推論 – パート1」

「ファンデーションモデル(FM)の民主化が一般化し、AIを活用したサービスへの需要が増加するにつれ、ソフトウェアプロバイダーは、組織内のデータ科学者および外部の顧客を対象にしたマルチテナントをサポートする機械学習(ML)プラットフォームを利用しようとしていますますます多くの企業が、ファンデーションモデルの利用価値に気付き始めています...」

Zephyr LLM アライメントの直接蒸留

近年、小さなオープン大規模言語モデルの能力とパフォーマンスは大幅に向上しており、初期のGPT-2モデルからよりコンパクトで正確かつ効果的なLLMフレームワークへの進歩を目撃してきましたこれらのフレームワークは、Chinchillaスケーリングが推奨する「計算最適」トークン量よりもはるかに多くのトークンを使用しています

『オープンソースLLMの歴史:模倣と整合性(パート3)』

オープンソースの大規模言語モデル(LLM)に関する以前の研究の大部分は、事前訓練ベースモデルの作成に重点を置いていましたしかしながら、これらのモデルは微調整されていないため、失敗することがあります...

2023年は大規模言語モデルの年でした:当時と現在の比較

2023年は、言語モデルの大規模な開発が前例のない勢いで進展した年となりました新しいモデルが驚くほど速いスピードで登場しましたそこで、これらの進歩を見てみましょう誰がそれを推進し、この年はどのようなものなのかを年の初めに、Google AIは...

このAIニュースレターはあなたが必要なすべてです#75

今週は、OpenAIのドラマが終わり、Sam AltmanとGreg BrockmanがOpenAIに復帰し、2人の新しい取締役が任命されました(既存の1人とともに…

LMQL — 言語モデル用のSQL

「SQLについて聞いたことがあるか、あるいはスキルを習得したことがあるはずですSQL(Structured Query Language)はデータベースデータの操作に広く利用される宣言型言語です年次のStackOverflow調査によると...」

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us