Learn more about Search Results Apple - Page 4

アップルの研究者がDeepPCRを公開:通常は順次処理される操作を並列化してニューラルネットワークの推論とトレーニングの速度を向上させる新しい機械学習アルゴリズム

人工知能や深層学習の進展により、さまざまな革新が実現されています。テキストや画像の合成、分割、分類などの複雑なタスクは、ニューラルネットワークの助けを借りて成功裏に処理されています。しかし、ニューラルネットワークのトレーニングにはコンピューティングの要求があり、適切な結果を得るまでには数日または数週間かかる場合があります。事前に訓練されたモデルの推論も、複雑なデザインの場合には遅くなる場合があります。 並列化技術は深層ニューラルネットワークのトレーニングと推論を高速化します。これらの手法は広く使用されていますが、ニューラルネットワークの一部の操作はまだ順次に実行されています。拡散モデルは、ノイズ低減ステージの続けざまに出力を生成し、前方および後方パスは層ごとに行われます。ステップ数が増えると、これらのプロセスの順次実行は計算上の負担となり、計算のボトルネックにつながる可能性があります。 この問題に対処するために、Appleの研究チームはDeepPCRという独自のアルゴリズムを導入し、ニューラルネットワークのトレーニングと推論を高速化しようとしました。DeepPCRは、一連のLステップを一定の方程式の答えとして認識することによって機能します。チームは、この解を取得するためにParallel Cyclic Reduction (PCR) アルゴリズムを使用しました。DeepPCRの主な利点は、順次プロセスの計算コストをO(L)からO(log2 L)に削減できることです。特にLの値が大きい場合には、この複雑性の削減により速度が向上します。 チームは、DeepPCRの複雑性の低減と高速化の条件を検証するために実験を行いました。DeepPCRを適用して、多層パーセプトロンの前方パスと後方パスを並列化することで、前方パスでは30倍、後方パスでは200倍の高速化を達成しました。 チームはまた、DeepPCRの適応性を示すために、1024層を持つResNetのトレーニングに使用しました。DeepPCRのおかげで、トレーニングは最大7倍速く完了することができます。この技術は、拡散モデルの生成フェーズで使用され、シーケンシャルアプローチよりも11倍高速な生成を行います。 チームは、主な貢献を以下のようにまとめています。 ニューラルネットワークのトレーニングと推論の順次プロセスを並列化するための革新的なアプローチであるDeepPCRを紹介しました。その主な特徴は、列長を表すLをO(L)からO(log2 L)に低減する能力です。 DeepPCRは、多層パーセプトロン(MLP)の前方パスと後方パスを並列化するために使用されました。この技術のパフォーマンスに関する詳細な分析が行われ、基本的な設計パラメータを考慮しながら、高パフォーマンスの領域を特定しました。スピード、解の正確性、メモリ使用量のトレードオフも調査しています。 DeepPCRは、MNISTおよびMNIST、CIFAR-10、CelebAのデータセットで訓練された拡散モデルのディープResNetのトレーニングを高速化するために使用されました。DeepPCRは著しく高速化されている一方で、ResNetトレーニングでは7倍高速化し、拡散モデルの生成では11倍高速化し、シーケンシャルな手法と比較可能な結果を生成します。

「MLX対MPS対CUDA:ベンチマーク」

「もしMacユーザーであり、深層学習の愛好家であれば、おそらくMacが重いモデルを処理できると願っていたことでしょうそうですよね?実は、AppleがMLXというフレームワークをリリースしました…」

「デジタル時代のユーザーセントリックデザイン:ウェブデザインとUI/UX体験に影響を与えるトレンド」

ユーザー体験に重点を置くウェブデザインの最新トレンドを紹介しましょうダークモードの普及から3D要素の統合まで、魅力的な要素を解説します

一緒にAIを学びましょう−Towards AIコミュニティニュースレター#5

おはようございます、AI愛好家の皆さん!今週のポッドキャストのエピソードは必聴で、これまでの24エピソードの中でも一番優れていますグレッグは驚くべき洞察を共有し、起業家だけでなく関係者にも関連する情報です...

「2023年のAI タイムライン」

はじめに 人工知能(AI)は、技術的な進歩が人間のつながりの本質と共鳴する形で私たちの日常生活と交差する魅力的な領域です。今年は、単なるアルゴリズムを超えてAIを身近に感じる革新の物語が展開されました。2023年のAIの素晴らしいハイライトを探索しながら、この旅に参加しましょう。 AI 2023年のハイライト 2023年のAIの世界で行われた最大の発見、進歩、および世界的な変革の一部を紹介します。これらの進歩がどのように、技術が私たちの人間の体験にシームレスに統合される未来を形作っているのか、探求してみましょう。 2023年1月のAIハイライト この年は、AIが医療と健康の分野で重要な進展を示しました。MITの研究者はマサチューセッツ総合病院と連携し、CTスキャンに基づいて患者の肺がんのリスクを評価できるディープラーニングモデルを開発しました。また、革命的な進歩として、研究者たちはAIを使ってゼロから人工的な酵素やタンパク質を作り出すことが可能なAIを開発しました。 他にも多くのイノベーションの中で、人工知能は視覚障害のある人々が食料品を見つけるのを手助けするために手杖に統合されました。一方、ビジネスのフロントでは、OpenAIがMicrosoftとの数年間にわたる数十億ドルの取引を通じてAIの開発に大きく投資しました。 2023年2月のAIハイライト 2023年2月には、OpenAIのChatGPTに関する話題が最も盛り上がりました。このAI搭載のチャットボットは、アメリカ合衆国医師資格試験(USMLE)に合格し、その人気は1億人以上のユーザーにまで急上昇しました。 ChatGPTの現象に応えて、GoogleはAI会話の領域に新しい要素となるBard A.I.を導入しました。また、MicrosoftもChatGPTと統合された新しいBing検索エンジンの導入に重要な一歩を踏み出しました。 Metaは、Metaエコシステム内でAIの能力を向上させるというLLaMAを発表しました。一方、Amazon Web Services(AWS)は、一流のAIプラットフォームであるHugging Faceと提携し、AI開発者を支援しました。 画期的な成果として、オックスフォードの研究者たちはRealFusionを示し、単一の画像から完全な360°写真モデルを再構築することができる最新のモデルを実証しました。 2023年2月には、AIの世界は音楽生成の領域にも足を踏み入れました。Google ResearchはMusicLMを紹介し、さまざまなジャンル、楽器、概念で曲を作成できるトランスフォーマーベースのテキストからオーディオへのモデルを提供しました。一方、Baiduの研究者はERNIE-Musicを発表し、拡散モデルを使用して、波形領域での最初のテキストから音楽を生成するモデルを開発しました。これらのモデルは、AIと創造的表現の融合における重要な進歩を示しています。 2023年3月のAIハイライト 2023年3月には、創造的なAIはいくつかの興味深い進展を見せました。AdobeはFireflyというAIをバックアップする画像生成および編集ツールの範囲でGenAIの領域に参入しました。一方、Canvaはユーザー向けにAIパワードの仮想デザインアシスタントとブランドマネージャーを導入しました。 テックジャイアンツのAIプロジェクトは、第1四半期終盤に向けて全力で進展していました。OpenAIはChatGPTとWhisperというテキストから音声へのモデルのためのAPIを発売しました。OpenAIはまた、ChatGPTのためのいくつかのプラグインをリリースし、最も高度なAIモデルであるGPT-4を正式に発表しました。 HubSpotはユーザー向けにChatSpot.aiとContent Assistantという2つの新しいAIパワードツールを導入しました。ZoomはスマートコンパニオンのZoom…

「Satya Mallickと一緒にコンピュータビジョンの問題を解決する」

Leading with Dataのこのエピソードでは、OpenCV.orgのCEOであり、Big Vision LLCの創設者でもあるSatya Mallickさんとお話しします。Satyaは、コンピュータビジョンの興味深い旅を共有し、画像処理とコンピュータビジョンの重要な違いについて強調しています。AIコンサルティングにおける透明性から戦略的成長戦略、ジェネレーティブAIの変革的な影響まで、Satyaは専門家や愛好家にとって貴重な視点を提供しています。 ダイナミックなAIとデータサイエンスの分野で成功の秘密を解き明かす準備をしてください。 Spotify、Google Podcasts、およびAppleなどの人気プラットフォームでLeading with Dataのエピソードを聴くことができます。お気に入りを選んで、洞察に富んだ内容をお楽しみください! Satya Mallickさんとの会話からの主要なインサイト 画像処理とコンピュータビジョンの違いは重要です – 画像の強化だけでなく、情報を抽出することに関わっています。 透明性と返金保証は、AIコンサルティングにおいて信頼性と信用性を構築することができます。 戦略的パートナーシップと機会の把握は、コンサルティングビジネスの成長に不可欠です。 ジェネレーティブAIは生産性を大幅に向上させ、複雑なタスクの自動化を可能にします。 態度と学習意欲を求める採用は、経験豊富なプロフェッショナルと競争するよりも、より有益になる場合があります。 AI業界は大きなブレイクスルーの目前にあり、今参加する人々にとって非常に大きな機会を提供しています。 AIおよびデータサイエンスのリーダーとの洞察に満ちたディスカッションのため、今後のLeading with Dataのセッションに参加しましょう!…

「RAGAsを使用したRAGアプリケーションの評価」

「PythonにおいてRAGAsフレームワークを使って、検索および生成コンポーネントを個別に評価するための検索強化生成(RAG)システムの評価」

「ウェアラブルデータによるコロナ感染予測」

消費者用ウェアラブルデバイスと医療用ウェアラブルデバイスの収斂は近いのか?

「チャットボットとAIアシスタントの構築」

この記事は、自然言語処理(NLP)とチャットボットフレームワークの総合ガイドを紹介します詳しくは、学んでください!

「アップルのiMessageでのBeeper Miniのブロックは、より大きなブルー/グリーンのバブルのサーガの一部です」

「Appleは顧客を保護するために予防策を取っていますBeeperは、Appleの最新の動きが正反対だと主張しています」

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us