Learn more about Search Results 6. 結論 - Page 4

「これらの完全自動の深層学習モデルは、スマートフォンの統合を使用して、猫の苦痛指標スケール(FGS)を使用した痛み予測に使用できます」

人工知能(AI)の能力は、医療、金融、教育など、あらゆる業界に広がっています。医学や獣医学の分野では、適切な治療を施すために、痛みの特定は重要な第一歩です。特に痛みを伝えることができない人々では、代替の診断技術の使用が求められます。 従来の方法には、痛み評価システムの使用や行動反応の追跡などがありますが、主観性、妥当性の欠如、観察者のスキルとトレーニングへの依存、そして痛みの複雑な感情と動機的な側面を十分に表現できないなど、いくつかの欠点があります。特にAIを活用することで、これらの問題に取り組むことができます。 いくつかの動物種には、苦痛の重要な指標となる表情があります。苦痛のある人とそうでない人を区別するために表情の尺度が確立されています。これらは特定の顔のアクションユニット(AU)にスコアを割り当てることで機能します。しかし、現在のグリマスケールを使用して静止画やリアルタイムの痛みをスコアリングするための技術は、労働集約的で手動のスコアリングに重く依存しているという制約がいくつかあります。また、毛色、品種、年齢、性別に加えて、さまざまな自然発生的な痛みの症候群をカバーし、幅広い動物データセットを考慮した完全に自動化されたモデルの不足が指摘されています。 これらの課題を克服するため、研究チームは最近の研究で「猫の表情指標スケール(FGS)」を提案し、猫の急性疼痛を評価するための信頼性のある手法として提示しました。このスケールを構成するために5つのアクションユニットが使用され、それぞれが存在するか否かに基づいて評価されています。累積FGSスコアは、猫が不快感を経験しており、援助を必要としている可能性を示します。FGSは、使用の容易さと実用性により、急性疼痛評価においてさまざまな文脈で使用できる柔軟な手法です。 FGSスコアと顔の特徴点は、ディープニューラルネットワークと機械学習モデルを利用して予測されました。畳み込みニューラルネットワーク(CNN)が使用され、サイズ、予測時間、スマートフォン技術との統合の可能性、および正規化された二乗平均平方根誤差(NRMSE)に基づく予測パフォーマンスなどの要素に基づいて必要な予測を行うためにトレーニングされました。データ解析を改善するために、35の幾何学的記述子が並列して生成されました。 FGSスコアと顔の特徴点はXGBoostモデルにトレーニングされました。平均二乗誤差(MSE)と精度メトリックを使用して、これらのXGBoostモデルの予測パフォーマンスを評価するために使用されました。この調査で使用されたデータセットには、37の特徴点で煩雑な注釈がされた3447枚の猫の顔写真が含まれています。 研究チームは、評価の結果、ShuffleNetV2が顔の特徴点の予測において最良の選択肢として浮上し、最も成功したCNNモデルは、正規化された二乗平均平方根誤差(NRMSE)が16.76%でした。最も優れたXGBoostモデルは、FGSスコアを95.5%の驚異的な精度と0.0096の最小平均二乗誤差(MSE)で予測しました。これらの測定結果は、猫の痛みの有無を区別するための高い正確性を示しています。猫の疼痛の評価プロセスを簡素化し、改善するためにこの技術的な進展が利用できることを結論として述べられています。

「ベクターデータベースは、生成型AIソリューションの未来をどのように形作るのか?」

紹介 生成AIの急速に進化する風景において、ベクトルデータベースの重要な役割がますます明らかになってきました。本記事ではベクトルデータベースと生成AIソリューションとのダイナミックな相乗効果について探求し、これらの技術的基盤が人工知能の創造性の将来を形作っているかを紐解きます。革新的なAIソリューションの最先端にもたらすベクトルデータベースの変革的な影響を解き放つため、この強力な連携の複雑さを旅してください。 学習目標 この記事では以下のベクトルデータベースの側面を理解するのに役立ちます。 ベクトルデータベースの重要性とその主要な構成要素 従来のデータベースとのベクトルデータベースの詳細比較 応用の観点からのベクトル埋め込みの探求 Pineconeを使用したベクトルデータベースの構築 langchain LLMモデルを使用したPineconeベクトルデータベースの実装 この記事はData Science Blogathonの一部として公開されました。 ベクトルデータベースとは何ですか? ベクトルデータベースとは、空間に格納されたデータの集合の形式です。しかし、ここでは数学的な表現で格納されているため、AIモデルが入力を覚えるのに便利であり、オープンAIアプリケーションが認知検索、推奨、テキスト生成を使用してさまざまなユースケースで活用できるようになっています。データの格納と検索は「ベクトル埋め込み」と呼ばれます。また、これは数値配列形式で表されます。トラディショナルなデータベースと比べて、非常に大規模でインデックス化された機能を持つAIの観点での検索ははるかに容易です。 ベクトルデータベースの特徴 これらのベクトル埋め込みのパワーを活用し、巨大なデータセット全体でのインデックス作成と検索を実現します。 あらゆるデータ形式(画像、テキスト、データ)と互換性があります。 埋め込み技術と高度なインデックス化された機能を採用しているため、与えられた問題のデータと入力の完全なソリューションを提供できます。 ベクトルデータベースは、数百の次元を含む高次元ベクトルを通じてデータを整理します。これらは非常に迅速に構成できます。 各次元は、それが表しているデータオブジェクトの特定の特徴または属性に対応しています。 従来のデータベースとベクトルデータベースの比較 図は従来のデータベースとベクトルデータベースのハイレベルなワークフローを示しています。 フォーマルなデータベースのやり取りはSQLステートメントを通じて行われ、データは行ベースおよび表形式で格納されます。…

「金融業界におけるAIの進出:自動取引からパーソナライズドバンキングへ」

財界は、人工知能(AI)の出現と統合によって、革命的な変化を目撃していますこの技術は、単なる付加要素ではなく、金融サービスの本質的な構造を再構築するための核となる要素です超人的なスピードで取引を実行する自動化取引アルゴリズムから個別の顧客に合わせたパーソナライズされたバンキング体験まで、AIによる金融業界の侵略が進行しています... 金融業界におけるAIの進出:自動化取引からパーソナライズされたバンキングへ Read More »

機械学習によるマルチビューオプティカルイリュージョンの作成:ダイナミックな画像変換のためのゼロショット手法の探索

アナグラムは、異なる角度から見るか、ひっくり返すことで外観が変化するイメージです。これらの魅力的な多角的視覚錯覚を生成するためには、通常、視覚知覚を理解してだます必要があります。しかし、新しいアプローチが登場し、これらの魅力的な多視点光学錯視を簡単かつ効果的に生成する方法を提供しています。 視覚錯覚を作成するためのさまざまなアプローチが存在しますが、ほとんどは人間がイメージをどのように理解するかについての特定の仮定に依存しています。これらの仮定はしばしば、われわれの視覚体験の本質をときどき捉えるだけの複雑なモデルにつながります。ミシガン大学の研究者たちは、新しい解決策を提案しています。人間が物事を見る方法に基づいたモデルを構築するのではなく、テキストからイメージへの拡散モデルを使用します。このモデルは人間の知覚について何も仮定しません。データのみから学習します。 この手法は、フリップや回転時に変形するイメージなど、古典的な錯視を生成するための新しい方法を提案しています。さらに、ピクセルを並び替えると外観が変化する「視覚アナグラム」と呼ばれる新しい錯視の領域にも進出しています。これには、フリップ、回転、ジグソーパズルのような複数の解を持つより複雑な変換も含まれます。この手法は、3つや4つの視点にまで拡張され、魅力的な視覚変換の範囲が広がっています。 この手法が機能するための鍵は、ビューを注意深く選択することです。画像に適用される変換は、ノイズの統計的特性を維持する必要があります。なぜなら、このモデルはランダム、独立、同一分布のガウスノイズを仮定してトレーニングされるからです。 この手法では、画像をさまざまな視点からデノイズするために、拡散モデルを利用して複数のノイズの推定値を生成します。これらの推定値は、逆拡散プロセスの1つのステップを容易にするために組み合わされます。 この論文では、これらの視点の効果を支持する経験的根拠が示され、生成される錯視の品質と柔軟性が紹介されています。 結論として、このシンプルでありながら強力な手法は、魅力的な多視点光学錯覚を作成するための新しい可能性を開拓しています。人間の知覚に対する仮定を避け、拡散モデルの機能を活用することで、視覚変換の魅力的な世界への新たなアプローチを提供しています。フリップ、回転、ポリモーフィックジグソーパズルなど、この方法は、視覚理解を魅了し挑戦する錯視を作り出すための多目的なツールを提供します。

人間に戻る:AIの道:コードからぬいぐるみまでの旅

人工知能(AI)の急速に進化する風景の中で、私たちはアプローチの転換を求める分岐点に立っています。特にシリコンバレーを中心に、テック業界では既存の製品にAIを統合し、増分のイノベーションを生み出す傾向があります。この戦略は、AIに対する一般の人々の理解を深め、抵抗を減らすという点で重要な役割を果たしてきました。しかし、このアプローチは頭打ちになりつつあります。AIの革命的な可能性を実現するためには、人間の根本的なニーズと行動に戻り、AIアプリケーションのための新しい革新的な「チャネル」を築かなければなりません。AIは感性的にならなければなりません! その重要性を強調するため、著名な作家でありデザイン思考家であるドン・ノーマンは、彼の画期的な著書「日常のデザイン」で、製品デザインを人間の本能と反応に整合させることの重要性を強調しています。この原則は、AIアプリケーションにおいても重要です。既存の製品にAIを埋め込むだけではなく、基本的な人間の経験とニーズを理解し、活用することが重要です。 これらの人間中心のデザインを発見するための効果的な手法の一つは、「デザインフィクション」です。この手法は、未来に自分自身を投影して、SF要素や弱いシグナルを活用して新たな使い方を概念化することを意味します。将来のシナリオを想像し、逆算して現在の製品に至るロードマップを作成することで、革新的な使い方を見つけることができます。 AIの変革的な性質を持つためには、持続可能な統合のための新たなパラダイムが必要です。そのためには、ある程度の科学的な洞察力が必要です。DeepMind、Google Research、FAIR、OpenAI、およびNvidiaなどの組織は、科学的な進歩によってこれに足場を築いています。ChatGPTなどの初期のプロトタイプは驚きと可能性を提供しました。次のステップでは、AIを現行の製品に埋め込んで利用性を向上させることが求められます。しかし、真に革新的な使い方を見つけるためには、技術の可能性に合ったものを特定することが重要です。 iPhoneのタッチスクリーンやApp Storeによってもたらされた革命を考えてみてください。スティーブ・ジョブズは、ブラックベリーのキーボードではなくタッチスクリーンを提唱したのは単なる姿勢ではなく、ユーザーの好みとニーズを深く理解していたからです。このアプローチは、最近OpenAIとの議論で示唆されたJony Iveの考え方に似ています。AIにおける同様の画期的な開発を暗示しています。 これらの革新的な使い方を特定するために、私たちは現行の製品にとどまるのではなく、SFや映画の世界に飛び込んでみるべきです。作家たちはそこで未来を予見しています。その一つの良い例は映画やテレビシリーズ「リミットレス」です。NZTという薬を通して人間の能力を高めるという中心テーマは、AIの増強パラダイムと共鳴します。主人公のエディ・モラやブライアン・フィンチは、注意を分散させず、後で細部を思い出すことを示しています。このコンセプトは、深い人類学的なニーズと増強パラダイムに合致します。WhatsAppの会話に集中していたとき、チームメイトが今朝コーヒーマシンであなたに話したことを思い出せたら、それはどんなに素晴らしいことでしょうか。 Rewind AIなどの企業も同様のコンセプトを探求しています。Rewind AIは、基本的なフォトエディティングやチャットボットを超える革命的な技術です。ユーザーは、生活の瞬間を卓越した明瞭さと詳細さで再訪・思い出すことができます。それを物語的な「リミットレス」の薬のようなデジタル版と考えてください。Rewind AIを使用すると、ユーザーは写真アルバムをめくるように、過去の経験を手軽にアクセスして再生することができます。さらに、Rewind AIは、スクリーンから離れているときでも、日常生活を記憶する力を与えるウェアラブル技術の開発も模索しています。最近リリースされたGemini Nanoのような軽量AIモデルのポテンシャルも強調されています。このAI技術の最新進歩は、コンパクトで効率的かつ驚くべきパワフルさを備えた、機械学習の未来を具現化しています。このような軽量でありながら強力なAIモデルを受け入れることで、AIが単なる臨時のアシスタントでなく、私たちの日常生活の一部として完全かつなめらかに統合された世界に一歩近づくのです。 結論として、AIの未来は既存の製品を単に強化するだけでなく、私たちの最も深い人間の本能とニーズと共感する新しい製品を作り出すことにあります。デザインフィクションからインスピレーションを得て、人間の行動の本質を理解することにより、革新的でありながら自然な傾向と欲望と深い共鳴を持つAIアプリケーションを開発することができます。私たちがこの旅に乗り出すにあたり、先見の明のあるデザイナーとAIの専門家との協力は、この変革的なテクノロジーの真の可能性を引き出し、AIが単なるツールではなく、私たちの人間の体験の拡張となる未来への道を開きます。 この記事は「人間に戻る:AIの旅、コードから愛撫へ」がMarkTechPostで最初に掲載されました。

ハグ顔(Hugging Face)での最新技術の組み合わせであるミクストラル(Mixtral)へようこそ

Mixtral 8x7bは、ミストラルが本日リリースした刺激的な大型言語モデルで、オープンアクセスモデルの最新技術基準を上回り、多くのベンチマークでGPT-3.5を凌駕しています。私たちは、MixtralをHugging Faceエコシステムに包括的に統合してのローンチをサポートすることに興奮しています🔥! 本日リリースされる機能と統合には以下があります: ハブ上のモデル、モデルカードとライセンス(Apache 2.0) 🤗 Transformers統合 推論エンドポイントとの統合 高速で効率的な本番推論のためのテキスト生成推論との統合 🤗 TRLを使用した単一のGPUでのMixtralの微調整の例 目次 Mixtral 8x7bとは何ですか 名前について プロンプト形式 分からないこと デモ 推論 🤗 Transformersを使用する テキスト生成推論を使用する 🤗…

デジタル変革によって打撃を受ける可能性が低い6つの産業

「急速な技術の進歩やデジタル変革が進む時代において、多くの産業がその業務の風景に根本的な変化を経験していますしかし、変化の波の中で、何部門かは変革の潮流に対して強靭な立ち向かいを見せていますこれらの産業は揺るがぬ基盤を築いており、デジタル変革の荒波からは容易に揺ぎない存在です本記事では、デジタル変革による大激変を免れるであろう6つの産業について解説します」

「OpenAIやLM Studioに頼らずにAutoGenを使用する方法」

イントロダクション OpenAIやLMスタジオに頼らずに、あなた自身のAIチームを作成する準備はできていますか?もはや銀行を荒らすことも、アプリをダウンロードすることもありません。llama-cpp-pythonの設定から、autogenフレームワークのヘルプを借りてローカルLLMのパワーを探求するまで。OpenAI APIに依存せず、Autogenのフルポテンシャルを引き出す準備をしましょう。 学習目標 詳細に入る前に、この記事の主な学習目標を概説しましょう: さまざまなAIライブラリとツールを評価・比較する方法を学ぶ。 llama-cpp-pythonがOpenAI APIの代替として提供できる方法を探索する。 2つの現実世界の使用例で獲得した知識を適用する: アルゴリズムメンターチームの構築と金融チャート生成の自動化。 AutoGenの改善されたユーザーエクスペリエンスを探索し、統合されたIPythonを通じて即時のコード実行結果を得る。 この記事はData Science Blogathonの一環として公開されました。 ツール紹介: llama-cpp-python、AutoGen、およびローカルLLM しかし、このテックツールキットの特別な点は何でしょうか? llama-cpp-pythonは、LLMAのような有名なモデルを含めて、ローカルでLLMを実行するためのゲートウェイです。コンピュータ上にAIのスーパースターがいるようなもので、さまざまなBLASバックエンドのサポートにより、速度は驚異的です! AutoGen AutoGenは、基盤モデルを使用するための高レベルな抽象化として機能する統一されたマルチエージェント会話フレームワークです。LLM、ツール、および人間の参加者を統合し、自動化されたチャットを通じて能力のある、カスタマイズ可能で会話形式のエージェントを結合します。エージェント同士が自律的にコミュニケーションして共同作業を行うことができ、複雑なタスクを効率的に進めることやワークフローを自動化することが可能です。 もしAutoGenの機能をより深く探求し、戦略的なAIチームビルディングをどのように支援するかを調べることに興味があるなら、当社の専用ブログ「Strategic  AI Team Building…

「Pythonでリストをフィルタリングする方法?」

イントロダクション リストのフィルタリングは、特定の基準に基づいてリストから特定の要素を抽出するPythonでの基本的な操作です。不要なデータを削除したり、特定の値を抽出したり、複雑な条件を適用したりするために、リストフィルタリングの技術をマスターすることは、効率的なデータ操作には欠かせません。この記事では、Pythonでのリストのフィルタリングのさまざまな技術と実用的な方法、さらにデータ選択スキルを向上させるための高度なフィルタリング技術について探求していきます。 フルスタックデータサイエンティストになりたいですか?AI&MLキャリアを進めるためには、BlackBelt Plusプログラムに参加する時がきました! Source: Favtutor 学習目標 Pythonリストフィルタリングの基本的な概念と重要性を理解する。 filter()、リスト内包表記、lambda関数、および条件文などの主要な技術をマスターし、効率的なデータ操作を行う。 チェインフィルター、条件の否定、ネストされたリストフィルタリング、正規表現、カスタム関数などの高度なフィルタリング方法を探求し、Pythonのデータフィルタリングの専門知識を高める。 無料でPythonを学びたいですか?今すぐ学ぶ! Pythonにおけるリストフィルタリングとは? リストフィルタリングとは、特定の条件や基準に基づいてリストから特定の要素を選択することを指します。これにより、必要なデータを抽出し、残りのデータを破棄することができ、元のリストの一部として作業できるようになります。Pythonにはリストをフィルタリングするためのさまざまな方法と技術が用意されており、それぞれに利点と使用例があります。 Pythonにおけるフィルタリングの技術 `filter()`関数の使用 Pythonの`filter()`関数は、関数とイテラブルを引数として受け取り、関数が`True`を返す要素を含むイテレータを返す組み込み関数です。与えられた条件に基づいてリストをフィルタリングするための簡潔な方法を提供します。以下に例を示します: #Pythonコード:def is_even(x):    return x % 2 == 0numbers =…

次元性の祝福?!(パート1)

「これらの問題の1つまたは複数について、慎重に選ばれた科学者のグループが夏に一緒に取り組めば、重要な進展が期待できると私たちは考えています」と提案は述べましたジョンはまだ知りませんでしたが...

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us