Learn more about Search Results 重ね合わせ - Page 4
- You may be interested
- 「共通テーブル式を使ってSQLロジックを向...
- 「ソーシャルメディアと機械学習を使用し...
- 驚くべき発見:AIが未解決の数学問題を解...
- 「ゼロから始めるLoRAの実装」
- 「LLMsとメモリは間違いなく必要なもので...
- 工学部は、Songyee Yoon博士(PhD ’...
- PyTorchを使用した効率的な画像セグメンテ...
- サンディープ・シンと組んでGen AIの次の...
- サポートベクターマシンとScikit-Learn:...
- イノベーティブなアコースティックスワー...
- 「ChatGPTのような大規模言語モデルによる...
- ChatGPTのTokenizerを解放する
- Amazon SageMakerを使用して、オーバーヘ...
- 72歳で亡くなったダグラス・レナット氏、...
- ディープフェイクビデオを出し抜く
AI/DLの最新トレンドを探る:メタバースから量子コンピューティングまで
著者は、MetaverseやQuantum Computingなど、人工知能とディープラーニングのいくつかの新興トレンドについて議論しています
プロテオームスケールでの高精度なタンパク質構造予測を可能にする
多くの新しい機械学習のイノベーションがAlphaFoldの現在の精度に貢献しています以下にシステムの概要を高レベルで示しますネットワークアーキテクチャの技術的な説明については、私たちのAlphaFoldのメソッド論文と特に詳細な補足情報をご覧ください
時系列データのフーリエ変換 numpyを使用した高速畳み込みの解説
フーリエ変換アルゴリズムは、数学の中でも最も偉大な発見の一つとされていますフランスの数学者ジャン=バティスト・ジョゼフ・フーリエは、彼の著書「…」において、調和解析の基礎を築きました
非アーベル任意子の世界で初めてのブレードング
Google Quantum AIチームの研究員であるTrond AndersenとYuri Lenskyが投稿 同じ2つのオブジェクトを見せられて、目を閉じます。目を開けると、同じ2つのオブジェクトが同じ位置にあります。それらが交換されたかどうかをどのように判断できますか?直感と量子力学の法則は同意します:オブジェクトが本当に同じ場合、判断する方法はありません。 これは常識のように聞こえますが、これは私たちが知る3次元の世界にのみ適用されます。研究者たちは、2次元(2D)平面内でのみ移動することが制限された特別な粒子である任意子と呼ばれる特別なタイプの粒子に対して、量子力学がかなり異なるものを可能にすると予測しています。任意子は互いに区別できず、一部の非アーベル任意子は、交換時に共有量子状態の観測可能な差異を引き起こす特別な性質を持っており、互いに完全に区別できないにもかかわらず、交換されたときに判断できます。研究者たちは、その親戚であるアーベル任意子を検出することに成功しましたが、交換に対する変化が微妙で直接検出することができないため、「非アーベル交換行動」を実現することは、制御と検出の両方の課題によりより困難でした。 「超伝導プロセッサーにおけるグラフ頂点の非アーベル結び目」では、この非アーベル交換行動を初めて観測しました。非アーベル任意子は、粒子を交換し、まるでストリングが絡まるように交換し合うことで量子演算が実現される新しい方法を開く可能性があります。私たちの超伝導量子プロセッサーでこの新しい交換行動を実現することは、環境ノイズに対して頑強であるという利点を持つトポロジカル量子計算の代替ルートになる可能性があります。 交換統計と非アーベル任意子 この奇妙な非アーベル的な振る舞いがどのように発生するかを理解するには、2本のストリングを結ぶことの類比が役立ちます。同じ2本のストリングを取り、互いに平行に置きます。その後、エンドを交換してダブルヘリックス形状を形成します。ストリングは同じですが、エンドを交換するときにお互いを巻き込むため、エンドが交換されたときは非常に明確になります。 非アーベル任意子の交換は、同様の方法で視覚化できます。ここでは、ストリングは、粒子の位置を時間次元に拡張して「ワールドライン」を形成することによって作成されます。2つの粒子の位置を時間に対してプロットすることを想像してください。粒子がその場にとどまる場合、プロットは単に、それらの定常位置を表す2本の平行線になります。しかし、粒子の場所を交換すると、ワールドラインがお互いに絡み合います。2回交換すると、結び目ができます。 少し視覚化するのは難しいですが、4次元(3つの空間プラス1つの時間次元)の結び目は常に簡単に解除できます。それらは自明です。シューレースのように、片方の端を引っ張って解きます。しかし、粒子が2次元空間に制限されている場合、結び目は3次元にあり、私たちの日常的な3Dの生活から知っているように、常に簡単には解除できません。非アーベル任意子のワールドラインの結び目は、粒子の状態を変換するための量子計算操作として使用できます。 非アーベル任意子の重要な側面は「退化度」です。いくつかの分離された任意子の完全な状態はローカル情報によって完全に指定されるわけではなく、同じ任意子構成はいくつかの量子状態の重ね合わせを表すことができます。非アーベル任意子を互いに巻き付けることで、エンコードされた状態が変化する可能性があります。 非アーベル任意子の作り方 Googleの量子プロセッサーの1つで非アーベル結び目を実現するにはどうすればよいでしょうか?私たちは最近、量子誤り訂正のマイルストーンを達成したサーフェスコードから始めます。量子ビットはチェッカーボードパターンの頂点に配置されます。チェッカーボードの各色の正方形は、正方形の四隅にある量子ビットの2つの可能な共同測定の1つを表します。これらの「スタビライザー測定」は、+または-1の値を返すことができます。後者はプラケット違反と呼ばれ、単一量子ビットのXおよびZゲートを適用して、斜めに作成および移動できます(チェスのビショップのように)。最近、これらのビショップのようなプラケット違反はアーベル任意子であることを示しました。非アーベル任意子とは対照的に、アーベル任意子の状態は、交換されたときにわずかに変化します。非常に微妙で、直接検出することは不可能です。アーベル任意子は興味深いですが、非アーベル任意子ほどトポロジカル量子計算にとって有望ではありません。 非アーベルアニオンを生成するには、 degeneracy(つまり、すべてのスタビライザー測定が+1になる波動関数の数)を制御する必要があります。スタビライザー測定は2つの可能な値を返すため、各スタビライザーはシステムの degeneracy を半分に減らし、十分な数のスタビライザーで、1つの波動関数だけが基準を満たすようになります。したがって、 degeneracy を増やす簡単な方法は、2つのスタビライザーを合併することです。そうすることで、スタビライザーグリッドから1つのエッジを除去し、3つのエッジが交差する2つの点が生じます。これらの点は、「degree-3 vertices」(D3Vs)と呼ばれ、非アーベルアニオンであると予測されています。 D3Vをブレードするためには、それらを動かす必要があります。つまり、スタビライザーを新しい形に伸ばしたり、圧縮したりする必要があります。これは、アニオンとその近隣の間に2キュビットゲートを実装することによって実現します(下の中央と右のパネルを参照)。 スタビライザーコード内の非アーベルアニオン。a:…
一度言えば十分です!単語の繰り返しはAIの向上に役立ちません
大規模言語モデル(LLM)はその能力を示し、世界中で話題になっています今や、すべての大手企業は洒落た名前を持つモデルを持っていますしかし、その裏にはすべてトランスフォーマーが動いています...
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.