Learn more about Search Results 調査 - Page 4

AWSとPower BIを使用して、米国のフライトを調査する

∘ 問題の説明 ∘ データ ∘ AWSアーキテクチャ ∘ AWS S3を使ったデータストレージ ∘ スキーマの設計 ∘ AWS Glueを使ったETL ∘ AWS Redshiftを使ったデータウェアハウジング ∘ インサイトの抽出...

希望、恐怖、そしてAI:AIツールに対する消費者の態度に関する最新の調査結果

米国の消費者が人工知能(AI)に関する意見と認識について述べた最新の「Trust Survey」の結果を明らかにしたThe Vergeの報告書「Hope, Fear, and AI」によると、AIの急速な上昇と広範な採用についての洞察を提供しています。Vox Mediaと提携して行われたこの調査は、2017年、2020年、2021年に実施されたビッグテックに対する態度に関する調査シリーズの第4弾です。この共同研究は、成人アメリカ人がAIをどのように利用し、考えているかについて包括的な理解を追求しました。 AIの影響の理解:2,000人以上のアメリカ人からの洞察 2023年4月に調査された2,000人以上のサンプルを元に、Vox Mediaは洞察に富んだデータストーリーテリングコンサルティング会社であるThe Circusと提携し、さまざまな重要な洞察を明らかにしました。この調査では、アメリカ人のAIツールの使用状況や最も急速に普及しているAIツールなどのトピックについて調査しました。また、AIが職場で引き起こす潜在的な変革や、AIに対応するための社会的な変化の希望なども研究しました。 関連記事:AIが人間を置き換える可能性はあるか? The Verge:技術と社会の交差点で信頼性のある情報源 「The Vergeは人々に技術がどのように影響を与えるかを理解するための場所であり、今年のAIほど大きなストーリーはありません」とThe Vergeの編集長Nilay Patelは強調しています。テクノロジージャーナリズムの最前線に立つ信頼できる権威として、The Vergeは新興技術が社会に与える影響を理解するための信頼性のある情報源として位置づけています。さまざまな分野でAIが中心になる議論が展開される中、The Vergeの最新の報告書は重要な関連性を持ち、貴重な洞察を提供しています。 AIの採用:アメリカ人の普及トレンド 「Hope, Fear, and…

AIの未来を形作る ビジョン・ランゲージ・プリトレーニング・モデルの包括的な調査と、ユニモーダルおよびマルチモーダルタスクにおける役割

機械学習研究の最新リリースで、ビジョン言語事前学習(VLP)とその多様なタスクへの応用について、研究チームが深く掘り下げています。この論文は、単一モーダルトレーニングのアイデアを探究し、それがマルチモーダル適応とどのように異なるかを説明しています。そして、VLPの5つの重要な領域である特徴抽出、モデルアーキテクチャ、事前トレーニング目標、事前トレーニングデータセット、およびダウンストリームタスクを示しています。研究者たちは、既存のVLPモデルとその異なる側面での適応をレビューしています。 人工知能の分野は常に、モデルを人間と同じように知覚、思考、そしてパターンや微妙なニュアンスを理解する方法でトレーニングしようとしてきました。ビジュアル、オーディオ、テキストなど、可能な限り多くのデータ入力フィールドを組み込もうとする試みがいくつか行われてきました。ただし、これらのアプローチのほとんどは、単一モーダル意味で「理解」の問題を解決しようとしたものです。 単一モーダルアプローチは、1つの側面のみを評価するアプローチであり、例えばビデオの場合、音声またはトランスクリプトに焦点を絞っており、マルチモーダルアプローチでは、可能な限り多くの利用可能な特徴をターゲットにしてモデルに組み込もうとします。たとえば、ビデオを分析する際に、音声、トランスクリプト、スピーカーの表情をとらえて、文脈を本当に「理解」することができます。 マルチモーダルアプローチは、リソースが豊富であり、訓練に必要な大量のラベル付きデータを取得することが困難であるため、課題があります。Transformer構造に基づく事前トレーニングモデルは、自己教師あり学習と追加タスクを活用して、大規模な非ラベルデータからユニバーサルな表現を学習することで、この問題に対処しています。 NLPのBERTから始まり、単一モーダルの方法でモデルを事前トレーニングすることで、限られたラベル付きデータでダウンストリームタスクを微調整することができることが示されています。研究者たちは、同じ設計哲学をマルチモーダル分野に拡張することで、ビジョン言語事前学習(VLP)の有効性を探究しました。VLPは、大規模なデータセットで事前トレーニングモデルを使用して、モダリティ間の意味的な対応関係を学習します。 研究者たちは、VLPアプローチの進歩について、5つの主要な領域を検討しています。まず、VLPモデルが画像、ビデオ、テキストを前処理して表現する方法、使用されるさまざまなモデルを強調して説明しています。次に、単一ストリームの観点とその使用可能性、デュアルストリームフュージョンとエンコーダのみ対エンコーダデコーダ設計の観点を探究しています。 論文では、VLPモデルの事前トレーニングについてさらに探求し、完了、マッチング、特定のタイプに分類しています。これらの目標は、ユニバーサルなビジョン言語表現を定義するのに役立ちます。研究者たちは、2つの主要な事前トレーニングデータセットのカテゴリである画像言語モデルとビデオ言語モデルについて概説しました。論文では、マルチモーダルアプローチが文脈を理解し、より適切にマッピングされたコンテンツを生成するためにどのように役立つかを強調しています。最後に、記事は、事前トレーニングモデルの有効性を評価する上での重要性を強調しながら、VLPのダウンストリームタスクの目標と詳細を提示しています。 https://link.springer.com/content/pdf/10.1007/s11633-022-1369-5.pdf https://link.springer.com/content/pdf/10.1007/s11633-022-1369-5.pdf この論文では、SOTA(State-of-the-Art)のVLPモデルについて詳細な概要が提供されています。これらのモデルをリストアップし、その主要な特徴やパフォーマンスを強調しています。言及されているモデルは、最先端の技術開発の堅固な基盤であり、将来の開発のベンチマークとして役立ちます。 研究論文に基づくと、VLPアーキテクチャの将来は有望で信頼性があります。彼らは、音響情報の統合、知識と認知学習、プロンプトチューニング、モデル圧縮と加速、およびドメイン外の事前学習など、様々な改善の領域を提案しています。これらの改善領域は、新しい研究者たちがVLPの分野で前進し、画期的なアプローチを打ち出すためにインスピレーションを与えることを目的としています。

[VoAGI調査] あなたの専門知識を共有して、2023年のテスト自動化研究に貢献しましょう

すべての開発者、QAテスター、およびテストの達人に呼びかけます! 当社の調査に参加し、eギフトカードを獲得するチャンスを手に入れましょう!

「言語モデルの逆スケーリングの謎を解明する」

This aspect of inverse scaling is a crucial point to keep in mind, as it can affect the performance of larger LLMs. However, this…

チャットボットは学校での不正行為を助長しているのか?最新の研究結果が驚くべき結果を明らかにしています

「スタンフォード大学の研究者によると、ChatGPTなどのA.I.ツールの使用は高校での不正行為の増加にはつながらなかったということが分かりましたこの結果は、この種のツールの効果的かつ倫理的な使用を証明する上で非常に価値があります」

Googleは独占禁止法訴訟で敗訴:ビッグテックにとって何を意味するのか?

「エピックゲームズが検索大手との法的闘争に勝利した事は画期的な勝利であり、同社の強さと決断力を示す重要な節目となりました」

マウス用のVRゴーグル:ネズミの世界の秘密を解き放つ

ノースウェスタン大学の研究者たちは、マウス向けの仮想現実ゴーグルを作り出すことで画期的な成果を達成しましたこの革新的な技術により、より高度な実験を行い、マウスの行動や認知機能をより深く理解することが可能になりましたこのブレークスルーは、科学研究を大幅に向上させ、将来の発見の道を開拓する可能性を秘めています

「2023年、オープンLLMの年」

2023年には、大型言語モデル(Large Language Models、LLMs)への公衆の関心が急増しました。これにより、多くの人々がLLMsの定義と可能性を理解し始めたため、オープンソースとクローズドソースの議論も広範な聴衆に届くようになりました。Hugging Faceでは、オープンモデルに大いに興味を持っており、オープンモデルは研究の再現性を可能にし、コミュニティがAIモデルの開発に参加できるようにし、モデルのバイアスや制約をより簡単に評価できるようにし、チェックポイントの再利用によってフィールド全体の炭素排出量を低減するなど、多くの利点があります(その他の利点もあります)。 では、オープンLLMsの今年を振り返ってみましょう! 文章が長くなりすぎないようにするために、コードモデルには触れません。 Pretrained Large Language Modelの作り方 まず、大型言語モデルはどのようにして作られるのでしょうか?(もし既に知っている場合は、このセクションをスキップしてもかまいません) モデルのアーキテクチャ(コード)は、特定の実装と数学的な形状を示しています。モデルのすべてのパラメータと、それらが入力とどのように相互作用するかがリストとして表されます。現時点では、大部分の高性能なLLMsは「デコーダーのみ」トランスフォーマーアーキテクチャのバリエーションです(詳細は元のトランスフォーマーペーパーをご覧ください)。訓練データセットには、モデルが訓練された(つまり、パラメータが学習された)すべての例と文書が含まれています。したがって、具体的には学習されたパターンが含まれます。ほとんどの場合、これらの文書にはテキストが含まれており、自然言語(例:フランス語、英語、中国語)、プログラミング言語(例:Python、C)またはテキストとして表現できる構造化データ(例:MarkdownやLaTeXの表、方程式など)のいずれかです。トークナイザは、訓練データセットからテキストを数値に変換する方法を定義します(モデルは数学的な関数であり、したがって入力として数値が必要です)。トークン化は、テキストを「トークン」と呼ばれるサブユニットに変換することによって行われます(トークン化方法によっては単語、サブワード、または文字になる場合があります)。トークナイザの語彙サイズは、トークナイザが知っている異なるトークンの数を示しますが、一般的には32kから200kの間です。データセットのサイズは、これらの個々の「原子論的」単位のシーケンスに分割された後のトークンの数としてよく測定されます。最近のデータセットのサイズは、数千億から数兆のトークンに及ぶことがあります!訓練ハイパーパラメータは、モデルの訓練方法を定義します。新しい例ごとにパラメータをどれだけ変更すべきですか?モデルの更新速度はどのくらいですか? これらのパラメータが選択されたら、モデルを訓練するためには1)大量の計算パワーが必要であり、2)有能な(そして優しい)人々が訓練を実行し監視する必要があります。訓練自体は、アーキテクチャのインスタンス化(訓練用のハードウェア上での行列の作成)および上記のハイパーパラメータを使用して訓練データセット上の訓練アルゴリズムの実行からなります。その結果、モデルの重みが得られます。これらは学習後のモデルパラメータであり、オープンな事前学習モデルへのアクセスに関して多くの人々が話す内容です。これらの重みは、推論(つまり、新しい入力の予測やテキストの生成など)に使用することができます。 事前学習済みLLMsは、重みが公開されると特定のタスクに特化または適応することもあります。それらは、「ファインチューニング」と呼ばれるプロセスを介して、ユースケースやアプリケーションの出発点として使用されます。ファインチューニングでは、異なる(通常はより専門化された小規模な)データセット上でモデルに追加の訓練ステップを適用して、特定のアプリケーションに最適化します。このステップには、計算パワーのコストがかかりますが、モデルをゼロから訓練するよりも財政的および環境的にはるかにコストがかかりません。これは、高品質のオープンソースの事前学習モデルが非常に興味深い理由の一つです。コミュニティが限られたコンピューティング予算しか利用できない場合でも、自由に使用し、拡張することができます。 2022年 – サイズの競争からデータの競争へ 2023年以前、コミュニティで利用可能だったオープンモデルはありましたか? 2022年初頭まで、機械学習のトレンドは、モデルが大きければ(つまり、パラメータが多ければ)、性能が良くなるというものでした。特に、特定のサイズの閾値を超えるモデルは能力が向上するという考えがあり、これらの概念はemergent abilitiesとscaling lawsと呼ばれました。2022年に公開されたオープンソースの事前学習モデルは、主にこのパラダイムに従っていました。 BLOOM(BigScience Large Open-science…

AIアドバイザーと計画ツール:金融、物流、それ以上を変革する

「AIアドバイザーやプランニングツールが金融、物流、医療、教育の根本的な変革を遂げる方法を探索してくださいこれらのAIシステムがどのようにデータ駆動の洞察を提供し、複雑なプロセスを最適化し、未来を形作っているのか学んでください」

Find the right Blockchain Investment for you

Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.

Advertising with us