Learn more about Search Results リソース - Page 4
- You may be interested
- なぜ科学者たちは仮想世界に没頭しているのか
- なぜ、そして何が特徴エンジニアリングと...
- マサチューセッツ大学アマースト校のコン...
- 「Google AIの新しいパラダイムは、多段階...
- 「拡散を支配するための1つの拡散:マルチ...
- DEF CONでハッカーたちがいたずらをしてAI...
- 「3D-VisTAに会いましょう:さまざまな下...
- 何でもセグメント化、しかしより速く! こ...
- ローカルマシン上でGenAI LLMsのパワーを...
- AIの闇面──クリエイターはどのように助け...
- 「2023年におけるAIをリードするさらなる1...
- 「たぬき+GPT4を使用して、20分で顧客サ...
- API管理を使用してAIパワードJavaアプリを...
- 「ODSC West Bootcamp Roadmapのご紹介 ...
- Voicebox メタ社の驚異的な音声生成AIツール
スタンフォード研究者がGLOWとIVESを使用して、分子ドッキングとリガンド結合位姿の予測を変革しています
ディープラーニングは、スコアリング関数の改善により、分子ドッキングの向上の可能性を持っています。現在のサンプリングプロトコルは、正確なリガンド結合ポーズを生成するために事前情報が必要であり、スコアリング関数の正確さが制限されています。GLOWとIVESという2つの新しいプロトコルは、スタンフォード大学の研究者によって開発され、この課題に対応し、ポーズのサンプリング効果を向上させることを示しています。AlphaFoldで生成されたタンパク質構造を含むさまざまなタンパク質構造でのベンチマークテストにより、これらの手法の妥当性が確認されています。 分子ドッキングにおけるディープラーニングは、しばしば剛体タンパク質ドッキングデータセットに依存しており、タンパク質の柔軟性を無視しています。一方、柔軟ドッキングはタンパク質の柔軟性を考慮していますが、精度が低い傾向があります。GLOWとIVESは、これらの制限に対応する高度なサンプリングプロトコルであり、特に動的結合ポケットでベースラインメソッドを常に上回っています。これは、タンパク質リガンドドッキングにおけるリガンドポーズのサンプリングを改善するために重要であり、ディープラーニングベースのスコアリング関数の向上に重要です。 分子ドッキングは、薬物探索においてタンパク質結合サイトへのリガンド配置を予測します。従来の方法は正確なリガンドポーズの生成に課題を抱えています。ディープラーニングは正確性を向上させることができますが、効果的なポーズのサンプリングに依存しています。GLOWとIVESは、チャレンジングなシナリオに対してサンプルを改善し、正確性を向上させるための進んだサンプリングプロトコルです。AlphaFoldで生成された未リガンド化または予測されたタンパク質構造に適用可能であり、キュレーションされたデータセットとオープンソースのPythonコードも提供しています。 GLOWとIVESは、分子ドッキングのための2つのポーズサンプリングプロトコルです。GLOWはソフト化された分散力ポテンシャルを利用してリガンドポーズを生成し、IVESは複数のタンパク質構造を組み込むことで正確性を向上させます。ベースラインメソッドとのパフォーマンス比較により、GLOWとIVESの優位性が示されています。クロスドッキングケースにおける正しいポーズの割合を測定するテストセットの評価は、IVESの効率において重要なシードポーズの品質を示しています。 GLOWとIVESは、リガンドポーズのサンプリングにおいてベースラインメソッドを上回る正確性を持ち、チャレンジングなシナリオやAlphaFoldベンチマークにおいて顕著なタンパク質の構造変化にも優れています。テストセットの評価により、正しいポーズのサンプリング確率の優越性が確認されています。IVESは複数のタンパク質構造を生成することで、タンパク質構造の幾何学的なディープラーニングにおいて、より少ない構造でSchrodinger IFD-MDと同様のパフォーマンスを達成します。GLOWとIVESによって生成された5,000のタンパク質リガンドペアのリガンドポーズデータセットは、ディープラーニングベースのスコアリング関数の開発と評価において貴重なリソースとなります。 https://arxiv.org/abs/2312.00191 結論として、GLOWとIVESは、基本的な技術よりも効果的な2つのポーズサンプリング方法であり、特に困難なシナリオとAlphaFoldベンチマークにおいて優れた性能を発揮しています。IVESでは複数のタンパク質構造が生成されるため、幾何学的ディープラーニングに非常に有利です。また、GLOWとIVESが提供する5,000のタンパク質リガンドペアのリガンドポーズを含むデータセットは、分子ドッキングのディープラーニングベースのスコアリング関数に取り組んでいる研究者にとって貴重な資源です。
このAI論文は、「パーシウス」という画期的なフレームワークを紹介していますこれにより、大規模な機械学習やAIモデルのトレーニング時のエネルギー浪費を最大30%削減することが可能です
大きな言語モデル(GPT-3など)は、トレーニングと推論中の計算ニーズにより、相当なエネルギーを必要とします。エネルギー使用量は、モデルのサイズ、タスクの複雑さ、ハードウェアの仕様、および運用時間などの要素によって大きく異なります。 これらのモデルのトレーニングには、高性能なGPUやTPUを使用するなど多くの計算リソースが必要とされ、長期にわたる相当なエネルギー消費を伴います。GPT-3のような大規模な言語モデルのトレーニングには、数日または数週間にわたる複数の家庭の消費電力に相当するエネルギーが使われるとの推定があります。 エネルギー消費の最適化は重要であり、モデルの効率を損なうことなく行われる必要があります。研究者は、大規模な言語モデルのトレーニングにおいてスループットの喪失を伴わない削減可能なエネルギー消費を目指しています。各パイプラインの計算量の問題は、分散実行計画において重要な問題です。ディープニューラルネットワーク(DNN)は、計算量が異なる粗粒度のテンソル操作ですので、すべてのステージをバランス良く調整するのは不可能です。 ミシガン大学とワシントン大学の研究者たちは、トレーニング中に消費されるエネルギーのすべてが直接エンドツーエンドのトレーニングスループットに貢献するわけではなく、トレーニングを遅くすることなく大幅に削減できることを発見しました。彼らはエネルギーの膨張の内的および外的な要因を発見し、Perseusという単一の最適化フレームワークを提案しています。 内的なエネルギーパフォーマンスの喪失は、計算の不均衡性によるものであり、外的なエネルギーパフォーマンスの喪失は、複数のパイプラインが並列で実行され、大量のデータセットでトレーニングをスケールアウトさせるためのものです。遅れているパイプラインよりも早く実行されるパイプラインは速く、全体のトレーニングスループットに影響を与えないエネルギーを無駄に消費します。 Perseusは、通常の運用条件下で内的なエネルギーパフォーマンスの喪失を最小限に抑えるため、イテレーション全体の時間エネルギーを効率的に事前特性化します。さらに、エネルギーを効率的に削減することにより、外的なエネルギーパフォーマンスの喪失を緩和します。非遅れているパイプラインにおいて適切なイテレーションタイミングを見つけることで、パイプライン内の計算を正確に遅くすることができます。 研究者は、ハイブリッド並列処理で大規模なモデルのトレーニングを行い、さまざまな強いスケーリング構成で遅れるパイプラインをシミュレーションしました。エネルギーパフォーマンスの喪失量とPerseusの外的なエネルギー節約を測定しました。他の非遅れるパイプラインは、遅れるパイプラインの計算が完了するまで待つため、外的なエネルギーパフォーマンスの喪失が生じます。各パイプラインイテレーションの開始と終了時にマイクロバッチの数やパイプラインバブルの比率を減らすことで、内的なエネルギーパフォーマンスの喪失を除去し、エネルギーを削減します。 Perseusをトレーニングワークフローに統合することは、AIの開発の将来に強い影響を与える可能性があります。彼らの研究は、LLM(Large Language Models)とGenAIの普及における分散トレーニングの持続可能性を大幅に向上させる可能性があります。
「転移学習を探求しましょう…」(Ten’i gakushū o tankyū shimashou…)
転移学習については、多くの定義があります基本的には、事前学習済みモデルの知識を活用して新しい問題を解決することを指します転移学習には数多くの利点があります...
「パブリックスピーキングのための5つの最高のAIツール(2023年12月)」
「人工知能の領域において、公の演説にAIツールを応用することは大きな進歩を意味しますこれらのツールは、スピーキングスキルの向上に役立つ実用的なソリューションを提供し、あらゆるレベルのスピーカーが直面する共通の課題に対処しますAI技術を活用することで、これらのツールはスピーチのデリバリー、コンテンツの構成、聴衆の関与に関する貴重な洞察を提供します私たちの探究...」
このAI論文では、ディープラーニングを通じて脳の設計図について探求します:神経科学とsnnTorch Pythonライブラリのチュートリアルから得た知見を活用してニューラルネットワークを進化させる
神経科学と人工知能の交差点では、特に「snnTorch」として知られるオープンソースのPythonライブラリの開発を通じて、顕著な進展が見られています。この革新的なコードは、脳の効率的なデータ処理方法に触発されたスパイキングニューラルネットワークをシミュレートするもので、UCサンタクルーズのチームの努力から生まれています。 過去4年間、このチームのPythonライブラリ「snnTorch」は、100,000を超えるダウンロードを誇って大きな注目を集めています。その応用は学術的な範囲を超えており、NASAの衛星追跡事業や半導体会社による人工知能用のチップの最適化など、多様なプロジェクトで有益な役割を果たしています。 IEEEの論文に最近掲載された「snnTorch」のコーディングライブラリは、脳の効率的な情報処理メカニズムを模倣したスパイキングニューラルネットワークの重要性を強調しています。彼らの主な目標は、脳の省電力処理を人工知能の機能性と融合させることで、両者の長所を活用することです。 snnTorchは、パンデミック中にチームのPythonコーディングの探求と電力効率の向上のために始まった情熱的なプロジェクトでした。今日、snnTorchは、衛星追跡からチップ設計までのさまざまなグローバルプログラミングプロジェクトで基礎的なツールとして確立されています。 snnTorchの優れた点は、そのコードとその開発に伴って編集された包括的な教育資料です。チームのドキュメントと対話型コーディング資料は、ニューロモーフィックエンジニアリングとスパイキングニューラルネットワークに関心を持つ個人のための入門点となり、コミュニティで貴重な資産となっています。 チームによって著されたIEEE論文は、snnTorchコードに補完される包括的なガイドです。非伝統的なコードブロックと主観的なナラティブを特徴とし、神経モーフィックコンピューティングの不安定な性質を正直に描写しています。これにより、コーディングの決定に不十分に理解された理論的な基盤と格闘する学生たちの苦悩を和らげることを意図しています。 教育リソースとしての役割に加えて、論文は、脳の学習メカニズムと従来の深層学習モデルとの隔たりを埋める視点も提供しています。研究者たちは、AIモデルを脳の機能と調整する課題について探究し、ニューラルネットワークでのリアルタイム学習と「一緒に発火して接続される」興味深い概念に重点を置いています。 さらに、チームはUCSCのGenomics InstituteのBraingeneersとの共同研究において、脳情報処理の洞察を得るために脳器官モデルを利用しています。この共同研究は、生物学と計算論的パラダイムの融合を象徴し、snnTorchの器官モデルのシミュレーション能力による脳発祥の計算の理解への大きな進歩となっています。 研究者の業績は、多様な領域をつなぐ協力的な精神を体現し、脳に触発されたAIを実用的な領域に推進しています。snnTorchの議論に特化した繁栄するDiscordとSlackチャンネルを通じて、この取り組みは産業と学術界の協力関係を促進し、snnTorchに関する熟練を求める求人募集内容にさえ影響を与え続けています。 UCサンタクルーズのチームによる脳に触発されたAIの先駆的な進展は、深層学習、神経科学、計算論的パラダイムのランドスケープを変革する可能性を示しています。
自然言語処理:AIを通じて人間のコミュニケーションの力を解き放つ
この記事では、NLPの理解と進化について取り上げますAIがコミュニケーションの世界にどのように貢献できるかを学びましょう
「AIおよび自動化により、2030年に存在しなくなるであろう6つのテクノロジージョブ」
「現在の進行方向に基づいて、バランスを保っているいくつかのテック系の職種をご紹介します」
チャットGPTプラグインとの安全なインタラクションの変換ガイド
イントロダクション かつては静的なコンテンツの領域であったChatGPTは、ChatGPTプラグインの注入によって革命的な変革を遂げています。これらのプラグインは仮想の鍵として機能し、デジタルストーリーテリングの未踏の領域を開拓し、ユーザーエンゲージメントを再構築しています。このガイドでは、ChatGPTプラグインがブログの世界にシームレスに統合される過程を探求し、創造性を育み、コミュニティを構築し、絶えず変化する景観での進歩を予測する可能性を明らかにします。 学習目標 ChatGPTプラグインを有効化およびインストールする手順を学び、言語モデルの機能を向上させる方法を理解する。 ChatGPTプラグインのアクティブなステータスを確認し、シームレスなユーザーエクスペリエンスのためにそのパフォーマンスを監視する方法を理解する。 APIキーの取得と必要なパッケージのインストールを含む、アプリケーションにChatGPTプラグインを統合するための簡略化されたガイドを探索する。 医療、金融、製造などの実際の応用に焦点を当て、ChatGPTプラグインが効率と意思決定に与える影響を示す。 この記事はデータサイエンスブログマラソンの一環として公開されました。 ChatGPTプラグインの世界に飛び込むことは、会話ツールキットに個人のタッチを加えることと同じです。これらのモジュール拡張機能は、ユーザーが相互作用を調整し、特定のブログ目標を達成する力を与えています。コンテンツを生成するだけでなく、オーディエンスに対してユニークでダイナミックな体験を作り上げることに関わるのです。 ChatGPTプラグインの変革的な役割 ChatGPTプラグインの変革的な役割について掘り下げることで、ユーザーエンゲージメントへのその変革的な影響が明らかになります。ChatGPTは単体の形態で印象的な自然言語処理を提供しますが、プラグインは専門機能を導入することにより、その体験をさらに向上させます。これらの機能は、トリガーされる応答や文脈に気を配った相互作用から外部APIによるリアルタイム情報の取得まで、さまざまなものです。 この革新的なダイナミックは、静的な会話モデルから多目的かつ適応性のあるツールへの進化を示しており、ChatGPTとの相互作用の方法において新たな次元を開くものです。これらのプラグインの具体的な内容に探求していくことで、会話型AIの世界を再構築する可能性がますます明らかになります。 プラグインの影響を活用する 私たちの探求では、これらの多才なツールの深い意義と安定性を慎重に検証します。ChatGPTプラグインが重要であり続ける理由を探求し、ユーザーとの相互作用の形成と豊かさを探ります。 このセクションでは、ChatGPTフレームワーク内でChatGPTプラグインの安定性を詳細に検証し、その信頼性と堅牢性について洞察を提供します。これらのプラグインの影響を探ることによって、さまざまな会話シナリオでの安定したパフォーマンスと重要性について包括的な理解を提供することを目指しています。 制約と技術の理解 実践的な側面について見てみましょう。安定性と制約は重要な考慮事項です。これらのプラグインはChatGPTフレームワーク内でどのように動作するのでしょうか?ニュアンスを理解し、エクスペリエンスを最適化し、情報を得るための情報を得るための知識を活用しましょう。同時に使用できるプラグインの数にはどのような制約がありますか?効果的なカスタマイズに関する実践的な考慮事項を探索しましょう。 ChatGPTプラグインの能力とパフォーマンスに影響を与える、GPT-4の興味深い影響について。基礎となるモデルの次のイテレーションとして、GPT-4の進歩はプラグインの機能に影響を与えます。この探求により、技術の発展がChatGPTプラグインの機能にどのように影響するかが示されます。 これらの制約と技術的なニュアンスを包括的に理解することで、ユーザーはChatGPTプラグインの領域を知識を活用して安全かつ効果的に進めることができます。 安全性とモニタリング 安全性は最重要です。ChatGPTプラグインに関連する安全性について掘り下げ、安全な相互作用のための対策を概説します。安全性に関するよくある質問について、簡潔なFAQ形式で説明し、分かりやすさと安全性を築き上げます。 ChatGPTプラグインの安全性に焦点を当てたよくある質問(FAQ)を提示します。これらはChatGPT体験にプラグインを組み込むことに関するユーザーの疑問をカバーします。FAQは、安全に関する側面に関する明確化を求めるユーザーにとって貴重なリソースとなります。 このステップバイステップの検証ガイドにより、ユーザーは自分のプラグインが会話に積極的に貢献していることを確認できるようになります。安全性を重視し、効果的なモニタリングのためのツールを提供することで、このセクションではユーザーがChatGPTプラグインの世界を安全かつ自信を持って進むために必要な知識を提供します。 費用、アクセス、およびインストール…
「FinTech API管理におけるAIの力を解き放つ:製品マネージャーのための包括的なガイド」
この包括的なガイドでは、AIが金融技術のAPI管理に果たす変革的な役割を探求し、各セクションごとに実世界の例を提供していますAIによる洞察力や異常検知からAIによる設計、テスト、セキュリティ、そして個人化されたユーザーエクスペリエンスまで、金融技術のプロダクトマネージャーはAIの力を活用してオペレーションを最適化し、セキュリティを強化し、提供を行わなければなりません
顧客セグメンテーション:クラスタリング以上のこと
データサイエンスチームが顧客セグメンテーションモデルを作成する必要が生じるとき、それはビジネスからの依頼か、あるいはデータサイエンティストからの積極的な決定のいずれかですいずれの場合においても、...
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.