Learn more about Search Results トラクター - Page 4
- You may be interested
- 「科学、情熱、そして多目的最適化の未来」
- 「GANやVAEを超えたNLPにおける拡散モデル...
- 大きな言語モデルの謎を解き明かす:初心...
- 「機械学習における確率的要素の本質を明...
- 「レート制限について知るべきこと」
- 「完璧なPythonデータ可視化のためのAIプ...
- ハグフェイスでの夏
- AIがトランスコミュニティに与える悪影響...
- 「大規模言語モデルの微調整に関する包括...
- Google AIはPixelLLMを提案します:細かい...
- 機械学習のオープンデータセットを作成中...
- 「プロジェクト管理におけるGenAIスキルの...
- 「AIにおけるアメリカのリーダシップの確...
- 「KafkaとDistributed Ray Serveのデプロ...
- 元GoogleのCEOがAIとメタバースを使って米...
「埋め込みを使った10の素敵なこと!【パート1】」
「クラシックな機械学習(ML)から一歩踏み出して、埋め込みはほとんどのディープラーニング(DL)のユースケースの中核ですこの概念を理解することで、柔軟なタスクを実行することができます」
このAI研究では、全身ポーズ推定のための新しい2段階ポーズ蒸留を紹介しています
多くの人間中心の知覚、理解、創造のタスクは、3D全身メッシュ復元、人間とオブジェクトの相互作用、姿勢に基づいた人間の画像と動作生成を含む、全身姿勢推定に依存しています。また、OpenPoseやMediaPipeなどのユーザーフレンドリーなアルゴリズムを使用して、仮想コンテンツの開発やVR/ARのための人間の姿勢の記録が大幅に増加しています。しかし、これらのツールは便利ですが、その性能はまだ改善が必要であり、その可能性を制限しています。したがって、ユーザー主導のコンテンツ制作の可能性を実現するために、人間の姿勢評価技術のさらなる開発が不可欠です。 比較的に、全身姿勢推定は、以下の要因により、体のみのキーポイント検出と比較して困難を伴います。 細かいキーポイントの位置特定のための人間の体の階層構造。 手と顔の小さな解像度。 画像内の複数の人物に複雑な体の部位が一致すること、特に遮蔽や難しい手のポーズの場合。 特に全身画像の多様な手のポーズと頭のポーズに対するデータの制約。 さらに、展開する前にモデルを薄くする必要があります。蒸留、トリミング、量子化が基本的な圧縮技術を構成します。 知識蒸留(KD)は、推論プロセスに不要なコストを追加せずに、コンパクトなモデルの効果を向上させることができます。この方法は、分類、検出、セグメンテーションなどのさまざまなタスクで広範に使用され、生徒がより経験豊富な教師から知識を取得することを可能にします。本研究では、全身姿勢推定のためのKDの調査を通じて、パフォーマンスと効率の良いリアルタイムのポーズ推定器のセットが開発されました。清華深圳国際研究院と国際デジタル経済アカデミーの研究者は、DWPoseという革新的な二段階ポーズ蒸留アーキテクチャを提案しています。図1に示すように、このアーキテクチャは最先端のパフォーマンスを提供します。彼らは、基本モデルとしてCOCO-WholeBodyで訓練された最新のポーズ推定器であるRTMPoseを使用します。 図1は、COCO-WholeBodyの全身姿勢推定のための彼らのモデルと比較可能なモデルの比較を示しています。 彼らは、第一段階の蒸留では、教師(例:RTMPose-x)の中間層と最終的なロジットをネイティブに使用して、生徒モデル(例:RTMPose-l)を誘導します。前のポーズトレーニングでは、キーポイントはその可視性によって区別され、監視には可視のキーポイントのみが使用されます。一方、彼らは教師のすべての出力、つまり可視および不可視のキーポイントを含む最終的なロジットを使用します。これにより、正確で綿密な値が生徒の学習プロセスに役立ちます。また、効果を高めるために、トレーニングセッションの進行に従ってデバイスの重みを徐々に下げる重み減衰アプローチも使用しています。第二段階の蒸留では、ヘッドを増強するためにヘッドに対する自己KDが提案されています。ヘッドがより優れていると、より正確な位置特定ができるためです。 彼らは、2つの同一のモデルを構築し、一方をアップデートする生徒、もう一方をインストラクターとして選択します。生徒のヘッドのみがロジットに基づいた蒸留によって更新され、残りの体は凍結されます。特に、このプラグアンドプレイの戦略は、密な予測ヘッドと共に動作し、蒸留を使用するかしないかにかかわらず、トレーニング時間を20%短縮して生徒がより良い結果を得ることができます。さまざまな人体部位の異なるサイズを対象とするデータのボリュームとバラエティは、モデルのパフォーマンスに影響を与えます。従って、包括的な注釈付きキーポイントの必要性から、既存の推定器は、細かい指や顔の特徴点を正確に特定するのに役立ちます。 そのため、彼らはさらに、さまざまな実生活の設定で撮影された多数の顔と手のキーポイントを含む追加のUBodyデータセットを組み込んでデータ効果を調査しています。したがって、彼らの貢献について次のことが言えます: • 全身データの制約を克服するために、彼らは多様で表現豊かな手のジェスチャーや表情に特に焦点を当てた包括的なトレーニングデータを探索し、実生活のアプリケーションに適用可能にしました。 • 効率的かつ正確な全身姿勢推定を追求するために、2段階の姿勢知識蒸留法を導入しています。 • 提案された蒸留およびデータのテクニックは、最新のRTMPoseを基本モデルとして使用し、RTMPose-lのAPを64.8%から66.5%に大幅に向上させることができます。さらに、彼らはDWPoseの作業生成における強力な効果と効率性を確認しています。
「Amazon SageMakerを使用したヘルスケアの要約オプションの探索」
現在の急速に進化する医療の現場では、医師は介護者のメモ、電子健康記録、画像報告書など、さまざまな情報源から大量の臨床データに直面しています患者のケアには不可欠なこの情報の富は、医療専門家にとっても圧倒的で時間のかかるものになります効率的に要約し、抽出することは、
「昨年のハイライトでODSC West 2023に向けて気分を高揚させよう!」
データサイエンスを学ぶ際には、関連するトピックや形式などを考慮する必要がありますAIをより良く構築するために、今年のODSC Westからのトップテンのバーチャルトークのリストを作成しましたので、さまざまなトピックを学ぶことができます
2023年にフォローすべきAI YouTuberトップ15選
人工知能は現在、さまざまな分野で指数関数的な成長を遂げています。その拡大により、この領域は学び、マスターするための数々の機会を持つ志望者にとって、多くの可能性を提供しています。その中で、いくつかのAI愛好家が登場し、それぞれの専門分野で優れた成績を収め、教えることへの情熱によって駆り立てられています。彼らは他の学習者の旅をより簡単にすることを目指しています。はい、YouTuberはYouTubeで無料で情報提供するための教育コンテンツを作成しています。ここでは、人工知能、深層学習、および機械学習に関する高く評価されたさまざまなビデオを持つ15人のAI YouTuberを紹介します。 3Blue1Brown 登録日: 2015年3月4日 登録者数: 5.33M ビデオ数: 132 ウェブサイト: https://www.3blue1brown.com リンク: https://www.YouTube.com/@3blue1brown Grant Sandersonは、このチャンネルを所有するAI YouTuberです。彼はアニメーションを使用して複雑な数学や機械学習のコンセプトを説明しています。彼の最も人気のあるビデオはフーリエ級数についてです。対象領域にはデータサイエンス、機械学習、数学が含まれます。このチャンネルは最高の機械学習YouTubeチャンネルの一つとされています。 Joma Tech 登録日: 2016年9月1日 登録者数: 2.21M ビデオ数: 111…
「ODSC APAC 2023での最初のトレーニングセッションの開催をお知らせします」
データサイエンスとAIの進展は、稲妻のような速さで進んでいます最新情報に遅れることなく、ODSC APAC(8月22日〜23日)では、データサイエンスの基礎から最新のツールやフレームワークまで、専門家によるトレーニングセッションが開催されます以下にいくつかのセッションをご紹介しますフルスタック機械学習...
「50 ミッドジャーニーノーリングのヒント(フラットレイ写真)」
「Midjourneyを使用してノーリング(フラットレイ)の写真を作成できることを知っていましたか?ここには始めるための50のプロンプトがあります」
ペンシルバニア大学の研究者は、RNNベースのリザーバーコンピュータを設計およびプログラムするための代替AIアプローチを紹介しました
人間の脳は、自然が創り出した中で最も複雑なシステムの一つです。ニューロンは再発するニューラルリンクを形成し、インパルスを通じて情報を伝達することで相互作用します。その信じられないほどの論理的推論と数値解析の方法により、研究者たちはこれらの生物学的なニューラルネットワークの方法を現在の人工ニューラルシステムに実装しようと試みています。ニューラル計算の方法には、動的システムの中のRNNや機械学習のためのコンピュータアーキテクチャのニューラルレプリカが含まれます。 研究グループは、現在のニューラルネットワーク技術の進歩により、ソフトウェア仮想化と論理回路の完全な分散型ニューラル実行が可能になると主張しています。これは、これらのニューラルネットワークのトレーニングと改善に通常必要な例データや状態空間のサンプリングの必要性を排除することによって達成されます。基本的には、仮想化やデジタル回路設計などの領域での人工知能のより効率的で堅牢な応用の可能性を示唆しています。 現在のニューラル計算へのアクセスは、ニューラルコンピュータと現代のシリコンコンピュータとの関係の理解が必要であるために限られています。これには、多くのコンピュータのような機能を管理する単純な一連の支配方程式を持つニューラルネットワークが必要です。単純な方程式の結果として、リザーバーコンピュータ(RC)などのネットワークは、再帰型ニューラルネットワーク(RNN)として理論的によく理解されています。これらは入力を受け取ると、内部状態の一連の進化を遂げ、出力はそれらの状態の重み付けの合計です。 ペンシルベニア大学の研究チームは、state neural programming(SNP)とdynamic neural programming(DNP)という2つのフレームワークを開発しました。SNPは、解析的な方程式を解決し操作するためにRCを使用します。DNPは、RCをカオスな力学系をランダムアクセスメモリとして保存するようにプログラムし、ニューラル論理AND、NAND、OR、NOR、XOR、XNORを実装します。 「SNPを使用したオープンループアーキテクチャ」では、タイムラグ入力の多項式時間乗のプログラミング行列を取得し、ハイパスフィルタとして操作できます。アルゴリズムを解決するために、「SNPを使用したクローズドループアーキテクチャ」が使用され、RNNが確率的で微分不可能な時間系列の重要な時間履歴を保存し、短時間フーリエ変換が行われます。 シミュレーションと仮想化には、連続時間RNNの時間履歴のプログラミングが必要なため、DNPメソッドを使用してクローズドループRNNが実装されます。研究者たちは、2000状態のホストRNNと15状態のゲストRNNのフィードバックのダイナミクスをシミュレートしようとしました。彼らは、サンプルなしでカオスなローレンツアトラクターをシミュレートしているだけだとわかりました。結論として、以下のようになります: 研究者たちは、シリコンハードウェアを模倣する現在のアプローチに対して、完全にプログラム可能な代替計算フレームワークが存在することを発見しました。代わりに、それぞれのユニークなシステムの完全な計算能力を最大化する特定のプログラミングシステムの作成に焦点を当てることを提案しています。
Googleのアナリティクスとデータサイエンスの領域を旅していく
イントロダクション Googleでアナリティクスとデータサイエンスの分野で優れた成果を挙げるプロフェッショナル、リシャブ・ディンドラに会いましょう。リシャブはデータを効果的に活用するための広範な専門知識と情熱を持っています。彼は先進技術を活用してイノベーションを推進し、価値ある洞察を抽出し、データに基づく意思決定を革新しています。リシャブのGoogleでのキャリアは素晴らしく、アナリティクスとデータサイエンスの分野を変革しました。彼の成果と貢献を探求して、Googleの成功を新たな高みに押し上げましょう。 リシャブから学びましょう! AV: Googleでデータサイエンティストになるまでの経歴を教えていただけますか?今の立場に至るためにどのようなステップを踏みましたか? リシャブ氏: 私は2011年にThorogood AssociatesでBIコンサルタントとしてキャリアをスタートし、それ以来データスペースで働いてきました。そのため、SQLやPythonなどの言語、データモデリング、プレゼンテーションスキル、およびTableauなどのツールの学習は、この旅の最初の必要なステップです。そして、数学と理論に深く入り込んでプロジェクトを行う人もいますが、私は実際にやってみてから概念を理解する方が最も効果的だと感じています。私にとって役立ったいくつかの重要なステップは次のとおりです: Analytics Vidhyaなどのプラットフォームでの素晴らしいコースを受講する Data Scienceのスキルを活用できる役割での機会を見つける 自分の情熱のあるテーマでプロジェクトを行う ビジネスとの緊密な連携とビジネスの理解 自分の知識を他の人と共有することで概念をより良く理解する ネットワーキングと他の人から学ぶこと Google Cloudの技術のスキルを獲得する データサイエンティストを目指すためのスキル AV: 成功したデータサイエンティストとして、データサイエンティストを目指す人にとって最も重要なスキルは何ですか?これらのスキルをどのように磨きましたか? ****リシャブ氏: 成功したデータサイエンティストとして、私はデータサイエンティストを目指す人にとって最も重要なスキルは次のとおりだと考えています: テクニカルスキル:…
「Googleのアナリティクスとデータサイエンスの領域を旅する」
紹介 Googleでアナリティクスとデータサイエンスの分野で優れたプロフェッショナルとして活躍するリシャブ・ディングラに会いましょう。リシャブはデータを効果的に活用するための幅広い専門知識と情熱を持っています。彼は先進技術を活用して革新を起こし、貴重な洞察を抽出し、データに基づく意思決定を革新しています。リシャブのGoogleでのキャリアは素晴らしいものであり、アナリティクスとデータサイエンスの分野を変革してきました。彼の功績と貢献を探ってみましょう。それがGoogleの成功を新たな高みに導いたものです。 リシャブから学ぼう! AV:Googleでデータサイエンティストになるまでの道のりを共有していただけますか?今の地位に至るまでにどのようなステップを踏みましたか? リシャブ氏:私は2011年にThorogood AssociatesでBIコンサルタントとしてキャリアをスタートさせ、それ以来データの分野で働いてきました。ですので、SQL、Python、データモデリング、プレゼンテーションスキル、そしてTableauのようなツールなど、最初に必要なステップはこれらの言語やスキルを学ぶことです。そしてその後、数学や理論の学習に深く入り込んでプロジェクトを行う人もいますが、私は実践して理解するという方法が最も効果的だと感じます。私が取ったいくつかの重要なステップは以下です: Analytics Vidhyaのようなプラットフォームでの素晴らしいコースを受講すること 自分の役割でデータサイエンスのスキルを活かせる機会を見つけること 情熱を持ってプロジェクトに取り組むこと ビジネスとの緊密な連携を図り、ビジネスについて学ぶこと 自分の知識を他の人と共有することで、概念をより良く理解すること ネットワーキングを通じて他の人から学ぶこと Google Cloudの技術を習得すること データサイエンティストを目指す人のためのスキル AV:成功したデータサイエンティストとして、データサイエンティストを目指す人にとって最も重要なスキルは何ですか?これらのスキルをどのように開発しましたか? リシャブ氏:成功したデータサイエンティストとして、私は次のスキルがデータサイエンティストを目指す人にとって最も重要だと考えています: 技術的スキル:これには強固な数学、統計学、プログラミングの基礎が含まれます。データサイエンティストはデータを収集、クリーニング、分析、可視化する能力が必要です。また、機械学習やディープラーニングの技術にも精通している必要があります。 問題解決スキル:データサイエンティストはデータを用いて問題を特定し、解決する能力が必要です。彼らは批判的かつ創造的に考え、新しい革新的な解決策を提案する必要があります。 コミュニケーションスキル:データサイエンティストは技術的、非技術的な双方のオーディエンスに対して自分の発見を伝えることができる必要があります。複雑な概念を明確かつ簡潔に説明する能力が求められます。 チームワークスキル:データサイエンティストはしばしば他のデータサイエンティスト、エンジニア、ビジネスプロフェッショナルと共同でプロジェクトに取り組みます。彼らは効果的に協力し、共通の目標に向かって働く必要があります。 私はこれらのスキルをコースを受講したり、個人プロジェクトに取り組んだり、他のデータサイエンティストとネットワーキングを行ったり、彼らの経験から学んだりすることで開発しました。 データサイエンティストを目指す人は避けるべき間違い…
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.