Learn more about Search Results Introduction to Python - Page 49
- You may be interested
- 光ベクトルビームマルチビット
- 「階層トランスフォーマー ― パート2」
- 「DreamBooth:カスタム画像の安定拡散」
- 「2023年8月のどこでもSpotifyストリーミ...
- 「ビデオセグメンテーションはよりコスト...
- 「ODSC West 2023のトピックトラックを紹...
- 責任ある先駆文化の構築
- BERTopic(バートピック):v0.16の特別さ...
- メディアでの顔のぼかしの力を解き放つ:...
- 生きています!Pythonと安価で基本的なコ...
- Amazon MusicはSageMakerとNVIDIAを使用し...
- 「AIシステムのリスク評価方法を学びまし...
- 「マルチラベル分類:PythonのScikit-Lear...
- メタAIは、CM3leonを紹介します:最先端の...
- 「SageMakerキャンバスモデルリーダーボー...
フリーティアのGoogle Colabで🧨ディフューザーを使用してIFを実行中
要約:Google Colabの無料ティア上で最も強力なオープンソースのテキストから画像への変換モデルIFを実行する方法を紹介します。 また、Hugging Face Spaceでモデルの機能を直接探索することもできます。 公式のIF GitHubリポジトリから圧縮された画像。 はじめに IFは、ピクセルベースのテキストから画像への生成モデルで、DeepFloydによって2023年4月下旬にリリースされました。モデルのアーキテクチャは、GoogleのクローズドソースのImagenに強く影響を受けています。 IFは、Stable Diffusionなどの既存のテキストから画像へのモデルと比較して、次の2つの利点があります: モデルは、レイテントスペースではなく「ピクセルスペース」(つまり、非圧縮画像上で)で直接動作し、Stable Diffusionのようなノイズ除去プロセスを実行しません。 モデルは、Stable Diffusionでテキストエンコーダとして使用されるCLIPよりも強力なテキストエンコーダであるT5-XXLの出力で訓練されます。 その結果、IFは高周波の詳細(例:人の顔や手など)を持つ画像を生成する能力に優れており、信頼性のあるテキスト付き画像を生成できる最初のオープンソースの画像生成モデルです。 ピクセルスペースで動作し、より強力なテキストエンコーダを使用することのデメリットは、IFが大幅に多くのパラメータを持っていることです。T5、IFのテキストから画像へのUNet、IFのアップスケーラUNetは、それぞれ4.5B、4.3B、1.2Bのパラメータを持っています。それに対して、Stable Diffusion 2.1のテキストエンコーダとUNetは、それぞれ400Mと900Mのパラメータしか持っていません。 しかし、メモリ使用量を低減させるためにモデルを最適化すれば、一般のハードウェア上でもIFを実行することができます。このブログ記事では、🧨ディフューザを使用してその方法を紹介します。 1.)では、テキストから画像への生成にIFを使用する方法を説明し、2.)と3.)では、IFの画像バリエーションと画像インペインティングの機能について説明します。 💡 注意:メモリの利得と引き換えに速度の利得を得るために、IFを無料ティアのGoogle Colab上で実行できるようにしています。A100などの高性能なGPUにアクセスできる場合は、公式のIFデモのようにすべてのモデルコンポーネントをGPU上に残して、最大の速度で実行することをお勧めします。…
単一のGPUでChatgptのようなチャットボットをROCmで実行する
はじめに ChatGPTは、OpenAIの画期的な言語モデルであり、人工知能の領域で影響力のある存在となり、様々なセクターでAIアプリケーションの多様な活用を可能にしています。その驚異的な人間のようなテキストの理解力と生成力により、ChatGPTは顧客サポートから創造的な文章作成まで、さまざまな産業を変革し、貴重な研究ツールとしても使われています。 OPT、LLAMA、Alpaca、Vicunaなど、大規模な言語モデルのオープンソース化にはさまざまな取り組みが行われていますが、その中でもVicunaはAMD GPU上でROCmを使用してVicuna 13Bモデルを実行する方法を説明します。 Vicunaとは何ですか? Vicunaは、UCバークレー、CMU、スタンフォード、UCサンディエゴのチームによって開発された13兆パラメータを持つオープンソースのチャットボットです。Vicunaは、LLAMAベースモデルを使用して、ShareGPT.comからの約70,000件のユーザー共有会話を収集し、公開APIを介してファインチューニングしました。GPT-4を参照とした初期の評価では、Vicuna-13BはOpenAI ChatGPTと比較して90%以上の品質を実現しています。 それはわずか数週間前の4月11日にGithubでリリースされました。Vicunaのデータセット、トレーニングコード、評価メトリック、トレーニングコストはすべて公開されており、一般のユーザーにとって費用対効果の高いソリューションとなっています。 Vicunaの詳細については、https://vicuna.lmsys.org をご覧ください。 なぜ量子化されたGPTモデルが必要なのですか? Vicuna-13Bモデルをfp16で実行するには、約28GBのGPU RAMが必要です。メモリの使用量をさらに減らすためには、最適化技術が必要です。最近発表された研究論文「GPTQ」では、低ビット精度を持つGPTモデルの正確な事後トレーニング量子化が提案されています。以下の図に示すように、パラメータが10Bを超えるモデルの場合、4ビットまたは3ビットのGPTQはfp16と同等の精度を実現することができます。 さらに、これらのモデルの大きなパラメータは、GPTトークン生成が計算(TFLOPsまたはTOPs)そのものよりもメモリ帯域幅(GB/s)によって制約されるため、GPTのレイテンシに深刻な影響を与えます。そのため、メモリに制約のある状況下では、量子化モデルはトークン生成のレイテンシを低下させません。GPTQの量子化の論文とGitHubリポジトリを参照してください。 この技術を活用することで、Hugging Faceからいくつかの4ビット量子化されたVicunaモデルが利用可能です。 ROCmを使用してAMD GPUでVicuna 13Bモデルを実行する AMD GPUでVicuna 13Bモデルを実行するには、AMD GPUの高速化のためのオープンソースソフトウェアプラットフォームであるROCm(Radeon…
ファルコンはHugging Faceのエコシステムに着陸しました
イントロダクション ファルコンは、アブダビのテクノロジーイノベーション研究所が作成し、Apache 2.0ライセンスの下で公開された最新の言語モデルの新しいファミリーです。 特筆すべきは、Falcon-40Bが多くの現在のクローズドソースモデルと同等の機能を持つ、初めての「真にオープンな」モデルであることです 。これは、開発者、愛好家、産業界にとって素晴らしいニュースであり、多くのエキサイティングなユースケースの扉を開くものです。 このブログでは、ファルコンモデルについて詳しく調査し、まずそれらがどのようにユニークであるかを説明し、その後、Hugging Faceのエコシステムのツールを使ってそれらの上に構築することがどれほど簡単かを紹介します。 目次 ファルコンモデル デモ 推論 評価 PEFTによるファインチューニング 結論 ファルコンモデル ファルコンファミリーは、2つのベースモデルで構成されています:Falcon-40Bとその弟であるFalcon-7Bです。 40Bパラメータモデルは現在、Open LLM Leaderboardのトップを占めており、7Bモデルはそのクラスで最高のモデルです 。 Falcon-40BはGPUメモリを約90GB必要としますが、それでもLLaMA-65Bよりは少なく、Falconはそれを上回します。一方、Falcon-7Bは約15GBしか必要とせず、推論やファインチューニングは一般的なハードウェアでも利用可能です。 (このブログの後半では、より安価なGPUでもFalcon-40Bを利用できるように、量子化を活用する方法について説明します!) TIIはまた、モデルのInstructバージョンであるFalcon-7B-InstructとFalcon-40B-Instructを提供しています。これらの実験的なバリアントは、命令と会話データに適応された調整が行われているため、人気のあるアシスタントスタイルのタスクに適しています。 モデルを素早く試してみたい場合は、これらが最適な選択肢です。…
データサイエンスにおける正規分布の適用と使用
データサイエンスを始める際に非常に困難なことの一つは、その旅がどこから始まり、どこで終わるのかを正確に把握することですデータサイエンスの旅の終わりに関して言えば、それは...
経験がなくてもデータアナリストになる方法
導入 エントリーレベルのデータアナリストは年間で最大$49,092を稼ぐことができることを知っていますか?現代のデータ駆動型の世界では、データ分析のキャリアは多様な産業にまたがり、この急速に成長している分野に入るための多くの道があります。データはすべての組織にとって主要な意思決定ツールです。分析はすべてのセクターで戦略的計画の重要な要素です。この記事では、新卒者の間でよくある質問に答えることを目的としています – 経験がない状態でデータアナリストになる方法! 経験がない状態でデータアナリストになることは可能ですか? 絶対に可能です!必要な資格を取得することで、経験がない状態でもデータアナリストの役割を追求することができます。データの仕事市場が初心者にアクセス可能な要因はいくつかあります: データの専門知識の不足:データの専門家の需要は現在の供給を上回り、新参者がこの分野に参入する機会が生まれています。 移行可能なスキルの重視:データ分析では、他のドメインから応用できるスキルが重要視されており、既存の能力を活用することができます。 市場の急速な成長:データの市場は指数関数的な成長を遂げており、産業全体で熟練した専門家の需要が増しています。 ビジネスがデータ駆動型の戦略に依存するにつれて、データの専門家の採用は最優先事項となります。個々人は努力を投資し、成長を受け入れ、適切なトレーニングリソースにアクセスすることで、このダイナミックな分野で成功するために必要な専門知識を獲得することができます。 経験がない状態でデータアナリストになる方法 経験がない状態でもデータアナリストの仕事を得るためのステップバイステップガイドをご紹介します: 1. 関連するスキルを習得する データアナリストである必要はなくても、統計学、数学、またはコンピュータサイエンスの関連科目の学位を持っていることは役立つ場合があります。対面のトレーニングセッションに参加したり、ビデオチュートリアルを視聴したり、オンラインコースを受講したりして、データの専門知識を向上させることができます。MatplotlibやSeabornのようなPythonのライブラリや、TableauやPower BIなどのデータ可視化アプリケーションを学びましょう。プログラミング言語に関連する言語の構文、データ型、およびパッケージの理解に時間を費やしましょう。 2. データツールをマスターする 実際のデータプロジェクトでは、実践的な設定でデータを使用する方法を教えてくれることで、実践的な経験を積むことができます。既存のプロジェクトに参加したり、公開されているいくつかの無料の公開データセットを活用して自分自身のプロジェクトを作成したりすることができます。データの取り扱いにはExcel、データベースのクエリにはSQL、SASやSPSSなどの統計ソフトウェアなどのツールを試してみましょう。 役に立つリソース – ソースコード付きの10の最高のデータ分析プロジェクト SQLの初心者ガイド 無料でオンラインでMS…
PandasAIの紹介:GenAIを搭載したデータ分析ライブラリ
イントロダクション 最近、ジェネレーティブ人工知能の分野で急速な発展とブレークスルーがあり、データ分野においても大きな変革が起きています。企業は、ChatGPTなどのイノベーションを最大限に活用する方法を模索しています。これにより、どんなビジネスでも競争上の優位性を得ることができます。新しい最先端のイノベーションとして、通常のPandasライブラリに「PandasAI」という名前のGenAIパワードのデータ分析ライブラリを導入しています。これはOpenAIが行っています。ジェネレーティブAIの他の領域とは異なり、PandasAIはGenAIの技術を分析ツールPandasに適用しています。 名前の通り、これは従来のPandasライブラリに人工知能を直接適用しています。Pandasライブラリは、Pythonを使用した前処理やデータの可視化などのタスクにおいて、データ分野で非常に人気があり、このイノベーションによってさらに良くなりました。 学習目標 新しいPandasAIの理解 会話型クエリを使用したPandasAIの使用 PandasAIを使用したグラフのプロット PandasAIおよびそのバックエンド(GenAI)の概要 この記事は、Data Science Blogathonの一環として公開されました。 PandasAIとは何ですか? PandasAIは、Generative AIモデルを使用してpandasでタスクを実行するPythonライブラリです。これは、Prompt Engineeringを使用してPandasデータフレームを会話形式にするために、Generative AIの機能を統合したライブラリです。Pandasを思い出すと、データの分析と操作が思い浮かびます。PandasAIでは、GenAIの恩恵を受けながら、Pandasの生産性を向上させようとしています。 なぜPandasAIを使用するのですか? Generative AIの助けを借りて、データセットに対して会話的なプロンプトを与える必要があります。これにより、学習や理解に複雑なコードを必要としなくなります。データサイエンティストは、自然な人間の言語を使ってデータセットにクエリを投げることができ、結果を得ることができます。これにより、前処理と分析にかかる時間が節約されます。これは、プログラマがコードを書く必要がない新しい革命です。彼らはただ思っていることを言い、その指示が実行されるのを見るだけです。非技術者でも複雑なコードを書かずにシステムを構築することができるようになりました! PandasAIはどのように動作しますか? PandasAIの使用方法を見る前に、PandasAIがどのように動作するかを見てみましょう。ここで「ジェネレーティブ人工知能」という用語を何度も使用しています。これは、PandasAIの実装の背後にある技術として機能しています。ジェネレーティブAI(GenAI)は、テキスト、オーディオ、ビデオ、画像、3Dモデルなど、さまざまなデータタイプを生成できる人工知能のサブセットです。これは、既に収集されたデータのパターンを特定し、それらを利用して新しい独自の出力を作成することで実現されます。 もう一つ注意すべきことは、大規模な言語モデル(LLM)の使用です。PandasAIは、数千万から数十億のパラメータを持つ人工ニューラルネットワーク(ANN)からなるモデルであるLLMに基づいてトレーニングされています。これにより、PandasAIの背後にあるモデルは、人間の指示を受け取り、解釈する前にトークン化することができます。PandasAIはまた、LangChainモデルを扱うように設計されており、LLMアプリケーションの構築を容易にします。 Pandas AIの始め方…
JAXの始め方
JAXは、Googleが開発したPythonライブラリであり、あらゆるタイプのデバイス(CPU、GPU、TPUなど)で高性能な数値計算を行うためのものですJAXの主な応用の一つは、機械学習です
RAPIDS:簡単にMLモデルを加速するためにGPUを使用する
はじめに 人工知能(AI)がますます成長するにつれて、より高速かつ効率的な計算能力の需要が高まっています。機械学習(ML)モデルは計算量が多く、モデルのトレーニングには時間がかかることがあります。しかし、GPUの並列処理能力を使用することで、トレーニングプロセスを大幅に加速することができます。データサイエンティストはより速く反復し、より多くのモデルで実験し、より短い時間でより良い性能のモデルを構築することができます。 使用できるライブラリはいくつかあります。今日は、GPUの知識がなくてもMLモデルの加速化にGPUを使用する簡単な解決策であるRAPIDSについて学びます。 学習目標 この記事では、以下のことについて学びます: RAPIDS.aiの概要 RAPIDS.aiに含まれるライブラリ これらのライブラリの使用方法 インストールとシステム要件 この記事は、Data Science Blogathonの一部として公開されました。 RAPIDS.AI RAPIDSは、GPU上で完全にデータサイエンスパイプラインを実行するためのオープンソースのソフトウェアライブラリとAPIのスイートです。RAPIDSは、最も人気のあるPyDataライブラリと一致する使い慣れたAPIを持ちながら、優れたパフォーマンスと速度を提供します。これは、NVIDIA CUDAとApache Arrowで開発されており、その非凡なパフォーマンスの理由です。 RAPIDS.AIはどのように動作するのですか? RAPIDSは、GPUを使用した機械学習を利用してデータサイエンスおよび分析ワークフローのスピードを向上させます。GPU最適化されたコアデータフレームを持っており、データベースと機械学習アプリケーションの構築を支援し、Pythonに似た設計となっています。RAPIDSは、データサイエンスパイプラインを完全にGPU上で実行するためのライブラリのコレクションを提供します。これは、2017年にGPU Open Analytics Initiative(GoAI)と機械学習コミュニティのパートナーによって作成され、Apache Arrowのカラムメモリプラットフォームに基づいたGPUデータフレームを使用して、エンドツーエンドのデータサイエンスおよび分析ワークフローをGPU上で加速するためのものです。RAPIDSには、機械学習アルゴリズムと統合されるDataframe APIも含まれています。 データの移動量を減らした高速データアクセス…
Taipy:ユーザーフレンドリーな本番用データサイエンティストアプリケーションを構築するためのツール
データサイエンティストとして、データの視覚化のためのダッシュボードを作成したり、データを視覚化したり、さらにはビジネスアプリケーションを実装して利害関係者が実行可能な意思決定を行うのをサポートするかもしれません
PolarsによるEDA:Pandasユーザーのためのステップバイステップガイド(パート1)
時折、データ解析のやり方を大きく変えるツールが現れます私はPolarsがそのようなツールの一つであると信じていますので、このシリーズの記事では、詳しく掘り下げて説明します
Find the right Blockchain Investment for you
Web 3.0 is coming, whether buy Coins, NFTs or just Coding, everyone can participate.